Ibercloud: orchestrating services to provide virtualized access to IberGrid

- C. Fernandez, A. Simón (CESGA)
- I. Campos, <u>E. Fernández</u>, A. Lopez Garcia, J. Marco De Lucas, M.A. Nuñez Vega (IFCA)
- C. Alfonso, I. Blanquer, M. Caballer, G. Molto (GRyCAP)
- G. Borges, M. David, J. Gomes (LIP)

IberGrid

Protugal & Spain NGIs joint operations

24,000 cores and 20PBytes storage available to Grid user community

Wide usage of virtualization techniques

Ibercloud Objectives

- Investigate the requirements of scientific users of cloud technologies
- Deploy a federated cloud laaS testbed for scientific computing within the Ibergrid collaboration
 - based on existing local deployments
- Provide a unique user friendly interface for the services

Ibercloud Sites

Authorization

- Users should be able to use a single identity at all sites
- Grid experience
 - VOMS ☺
 - User certificates (3)
- We want a working solution fast
 - working across cloud implementations
 - easy enough to be quickly deployable
 - Flexible for different models of federation (country, site)

Architecture

- Start with centralized LDAP authentication:
 - I. Cloud service portal adds users do main LDAP instance
 - 2. Sites can read LDAP records and authenticate against LDAP server

Registration Portal (I)

- Web portal to add users to the infrastructure
- http://cloud.ibergrid.eu

Registration Portal (II)

- Registration consists on filling a survey with intended usage
 - Not needed if already part of IBERGRID
- Each request is evaluated and approved independently

LDAP tree and namespaces (I)

Tree with country and site branches

		cn=readonly cn=	ou=roles	
general users LIP users	ou=users ou=lip	c=pt		
general ES users	ou=users			dc=ibergrid, dc=eu
CESGA users	ou=cesga		o=cloud	
IFCA users	ou=ifca	c=es		
UPV users	ou=upv			

uid=aaa@xxx.pt, ou=users, c=pt, o=cloud,dc=ibergrid, dc=eu uid=bbb@yyy.es, ou=users, c=es, o=cloud,dc=ibergrid, dc=eu uid=ccc@cesga.es, ou=cesga, c=es,

o=cloud,dc=ibergrid, dc=eu

LDAP tree and namespaces (II)

 Users are "uniquely" identified by e-mail with a common suffix:

```
uid=xxxx@yyyy.pt, o=cloud, dc=ibergrid, dc=eu
```

- Internal remapping within the openIdap server
 - All users remapped to o=cloud,dc=ibergrid,dc=eu
 - uid=xxxx@yyyy.pt is also a valid DN
- We get the advantages of a hierarchical namespace with the simplicity of a flat namespace

LDAP Support

OpenStack:

- Authentication is performed by a dedicated service named "keystone"
 - · Changed architecture while deploying our testbed
 - LDAP support required particular schema
- IFCA has extended it for LDAP authentication
 - LDAP + LDAPS support
 - No restrictions on DN or LDAP schema

OpenNebula:

- Common DN for all users remapping at the LDAP server
- Secure LDAPS needed tweaks but worked
- LDAP authentication with the APIs
 - Does not work → major show-stopper for us!

VOMS AuthN

- IFCA+CNRS Started to develop VOMS AuthN in OpenStack Keystone
 - Ibercloud will evaluate if it fits the deployment

Code on github: https://github.com/alvarolopez/keystone/tree/voms_auth Docs: http://keystone-voms.readthedocs.org/en/latest/voms.html

Accessing the Resources

Site Capabilities (I)

CESGA

Name	small	medium	large	small-kvm	small-occi
Number of Cores	I	4	8	1	I
Memory (RAM)	1024	4096	8192	1024	1024
Disk	40GB	60GB	80GB	40GB	40GB
Intranet Network	IOG Eth.				
Public/Private IP	Pool of public IPs with a maximum of 254				

IFCA

Name	m I .tiny	m1.small	m1.medium	m I .large	ml.xlarge
Number of Cores	1	I	2	4	8
Memory (RAM)	512	2048	4096	8192	16384
Disk	0	20	40	80	160
Intranet Network	GB Eth				
Public/Private IP	VLAN and VPN per project, no public IPs currently				

Site Capabilities (II)

LIP

Name	small	medium	large
Number of Cores	I	2	4
Memory (RAM)	512	1024	4096
Disk	10	40	100
Intranet Network		GB Eth	
Public/Private IP	VLAN and VPN per project, no public IPs currently		

GRyCAP

Name	tiny	small	medium	large	
Number of Cores	I	I	2	4	
Memory (RAM)	512	1024	2048	4096	
Disk	20	40	80	80	
Intranet Network		GB Eth			
Public/Private IP		Pool of public IPs with a maximum of 32			

Use case: MPI Applications

 Good I/O performance with PCI Passthrough

Use Case: PROOF as a Service (I)

- PROOF is a parallel mode for ROOT (HEP analysis software)
- PROOF requires the deployment of a set of services on the executing hosts
 - Not trivial for users
 - Dynamic demand of resources
- PaaS on top of the laaS service
 - Builds PROOF cluster automatically from the ROOT interface

Use Case: PROOF as a Service (II)

Use Case: Mathematica

- Used at IFCA for physics phenomenology simulations
- Very specific machine configuration
 - not grid friendly
 - too heavy for desktops
- Researchers start VMs with Mathematica as needed
 - hardware independent environment
 - ability to test and execute various software configurations
 - better reliability and availability

Next steps...

- Continue working on federated identity
 - VOMS
 - SAML
- Investigate user interfaces/API compatibility
 - OCCI now also available in OpenStack
- Open infrastructure to pilot users
 - Get feedback and requirements
- VM Image Management
 - Image catalogues & repositories
- Monitoring & Accounting
 - following the EGI Cloud TF developments

Thanks

Questions?

