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APPLICATION CONTEXT - NGS 

•  Is opening the way to new and more 
accurate biological analysis. 

•  Is extremely helpful to the detection of 
various forms of disease. 

• Enables the sequencing of entire genomes 
more efficiently and economically and with 
greater depth than ever before. 

2009 2010 Target 

Time years weeks days 

Cost [$] 100K  10K  < 1K 



DATA EXPLOSION 

•  Needs of new computational environment 

NGS data bottleneck 

N users * 80M of reads 

1 analysis = 80M of reads 



GENETICS DATA 

•  NGS technologies chop the DNA/RNA molecules 
into small fragments called reads. 

•  (In our case)NGS data coming from the analysis of 
Chronic Myeloid Leukemia. 

•  The reads must be aligned to a reference genome 
(HG19). 



ALIGNMENT PHASE 
Most common operation in these kind of analysis 
•  Reads are mapped onto a reference genome 
•  Alignment tool: Bowtie 
•  Two steps in the alignment process: 

•  Candidate lookup: reduces the search space of the local 
alignment from the entire genome to a short list of possible 
alignment locations  

•  Local alignment: generally solved using the Smith-Waterman  

 



TOPHAT & BOWTIE 

•  TopHat is a fast splice junction mapper for RNA 
Seq reads.  

•  It aligns RNA-Seq reads to mammalian-sized 
genomes using the ultra high-throughput short 
read aligner Bowtie, and then analyzes the 
mapping results to identify splice junctions 
between exons. 

•  TopHat receives as input reads produced by the 
Illumina Genome Analyzer 

•  The short reads alignment is surely the most 
common operation in RNA-Seq data analysis. The 
purpose of the alignment is to map each short 
read fragment onto a genome reference.  



TOPHAT OPTIMIZATION 
Distributed version Original version 
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The size of the problem: 
•  Each run of the “step b” requires about 2GB (compressed) of reference 

genome and and about 500MB of input files 
•  It is easy to have thousands of runs to be executed over the grid 

infrastructures 

Virtual 
Environment 

@IS4AC 



HOW TO SUBMIT TO THE GRID ? 

•  The problem with this workflow is how to deal 
with grid job submission 

•  The main problems are: 
•  The used scheduler is not “grid aware” 
•  The job failure is very difficult to be handled in such 

a scenario 
•  The status of the jobs is “done” only when the 

output file is available on the common storage 
server 

•  It could be time consuming to check the status of 
each submitted job 



THE SOLUTION: USING A “GATEWAY” 

•  We already have a framework for submitting jobs over 
grid infrastructure called Job Submission Tool (JST) 

•  This is a pilot system based on the interaction with a 
Task Queue databases.  

•  The workflow itself is already managed using a 
database  
•  We can use the same tools and logic already in production at 

the Boella LAB(IS4AC). 

•  The JST is able to deal with job monitoring and re-
submission of the failed jobs  
•  It is also able to deal with the status of the stage-out 

•  JST is based on a RDBMS so it is easy to interact with 
the VLS 



•  Each of the segment is an independent tasks 
•  In order to submit and control automatically (without 

human control) all the tasks, we use a procedure made 
by few elements: 
•  DB Server -- Repository of all tasks 

•  It is really useful to monitor the running jobs  
•  It always have knowledge of done, running, undone and failed tasks 
•  Can easily deal about prioritization, dependency, different kind of 

application or different users, etc. 
•  Takes care of association between: task, executable, input and output 

files 
•  In a separate table/DB there are also monitoring information like: 

•  The exit status of each “error prone” action 
•  CE/HOST of the execution  
•  JOB_ID, TASK  
•  … 

GENERIC “JST”: PROCEDURES 



•  Job Wrapper -- manage all the general actions and make starts 
the real application on the WN 
•  It takes care of “choosing” the task to be executed (querying the DB 

server) 
•  It takes care of retrieving input files; storing output files (handling error 

conditions), updating the DB server accordingly 
•  It launches the execution of the task and handles the exit_status 

updating the DB server accordingly 
•  Job Submitter -- Submit job to different WMS 

•  It submits jobs to the grid infrastructure at different rates, taking care of 
the queued jobs 

•  It uses different WMS in order to avoid single point of failure.  
•  Job Controller -- Checks for task status and can choose action to 

be executed  
•  It can retrieve automatically the output 
•  Advice the user (in this case the DB in the VLS) for the end of a task  

GENERIC “JST”: PROCEDURES (2) 
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A series of scripts runs periodically 
on the UI to submit and control 
the jobs 

The central DB acts as a “task 
queue” for automatic job 

submission 
 

•  A simple monitoring system, based on 
a central DB, give the possibility to 
know in real time the status of each 
job and make some post-mortem 
analysis. 
•  Status of the single operation made by the 

running script  
•  Location of the jobs 
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• JST: Grid Scheduler (Grid Environment) 
• VLS: Virtual Local Scheduler (Virtual 
Environment) 

• System Agent (monitoring agent) 
• HG19: Last Human Genome 
• CR: Common Repository - NFS 
• DataBase  
• Hypervisor – KVM 

LEGENDA 



•  The “step a” is executed as usual within the virtual 
environment on the Boella LAB, using the common repository 

•  After the completion of this step, TopHat goes on with the 
creation of the input file of the “step b” on the grid storage 
element… 

•  … and create the task for the “step b” both in the VLS and in 
the JST DBs 

•  This triggers the job submission over the grid infrastructure … 
•  … JST monitors and resubmit the jobs in case of failure  
•  If the output is correctly stored from the job on the Grid 

Storage Element the JST Job Controller updates VLS DB  
•  A daemon in the Boella LAB  transfers the output of the grid 

job from the grid storage element to the “common repository” 
•  The rest of the workflow could run as usual 

DESCRIPTION OF THE DISTRIBUTED 
WORKFLOW 
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•  The main problem in this set-up is the data transfers 
between grid storage element and the Laboratory 
where the VLS is running 

•  To run the others steps of the workflow it is needed to 
have way more bandwidth to transfer data among 
nodes 

•  We compressed all the input and output files 
•  Together with the reference genome 

•  In order to port also the other step will be needed to 
move the VLS from the laboratory network to a more fast 
network 

•  The best solution will be to deploy the VLS on a IaaS 
service on a farm with fast network  
•  WNoDeS 

OPEN ISSUES AND SOLUTIONS 
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•  The porting of this kind of workflows could be of great 
interest for bioinformatics researchers as it will give the 
possibility to reduce the overall processing time 

•  Executing huge amount of runs over grid infrastructure 
could be far more easy by means of a gateways like JST 
•  That takes cares of submitting, monitoring and resubmitting the 

jobs in case of failures 

•  The size of the data poses new challenges for running on 
the grid infrastructure 

•  Exploiting cloud solution like WNoDeS could help in dealing 
with this new challenges 

CONCLUSIONS AND FUTURE WORKS 


