
•  DONVITO Giacinto (INFN) 
•  GAIDO, Luciano (INFN) 
•  CESINI, Daniele (INFN) 
•  MOSSUCCA, Lorenzo (Istituto Superiore Mario Boella) 
•  TERZO, Olivier (Istituto Superiore Mario Boella) 
•  RUIU, Pietro (Istituto Superiore Mario Boella) 
•  ACQUAVIVA, Andrea (Politecnico di Torino) 

TOPHAT ON THE GRID: AN 
AUTOMATIC WORKFLOW FOR 

SEQUENCE ALIGNMENT 
EXPLOITING EGI/IGI GRID 

INFRASTRUCTURE 

EGI TF, 17-21 September 2012, Prague 



OUTLINE 

•  Scientific problem description 

• Description of the workflow 

• Description of the grid distributed execution 

• Problem & Solutions 

• Conclusion and future works 



APPLICATION CONTEXT - NGS 

•  Is opening the way to new and more 
accurate biological analysis. 

•  Is extremely helpful to the detection of 
various forms of disease. 

• Enables the sequencing of entire genomes 
more efficiently and economically and with 
greater depth than ever before. 

2009 2010 Target 

Time years weeks days 

Cost [$] 100K  10K  < 1K 



DATA EXPLOSION 

•  Needs of new computational environment 

NGS data bottleneck 

N users * 80M of reads 

1 analysis = 80M of reads 



GENETICS DATA 

•  NGS technologies chop the DNA/RNA molecules 
into small fragments called reads. 

•  (In our case)NGS data coming from the analysis of 
Chronic Myeloid Leukemia. 

•  The reads must be aligned to a reference genome 
(HG19). 



ALIGNMENT PHASE 
Most common operation in these kind of analysis 
•  Reads are mapped onto a reference genome 
•  Alignment tool: Bowtie 
•  Two steps in the alignment process: 

•  Candidate lookup: reduces the search space of the local 
alignment from the entire genome to a short list of possible 
alignment locations  

•  Local alignment: generally solved using the Smith-Waterman  

 



TOPHAT & BOWTIE 

•  TopHat is a fast splice junction mapper for RNA 
Seq reads.  

•  It aligns RNA-Seq reads to mammalian-sized 
genomes using the ultra high-throughput short 
read aligner Bowtie, and then analyzes the 
mapping results to identify splice junctions 
between exons. 

•  TopHat receives as input reads produced by the 
Illumina Genome Analyzer 

•  The short reads alignment is surely the most 
common operation in RNA-Seq data analysis. The 
purpose of the alignment is to map each short 
read fragment onto a genome reference.  



TOPHAT OPTIMIZATION 
Distributed version Original version 



EGI/IGI 

EGI - TOPHAT WORKFLOW 
START	
  

Mapping reads  
(seg 1) 	
  

Joining step a 	
  

Mapping 
reads  

(seg 1) 	
  

Mapping reads  
(seg 2) 

Mapping 
reads  

(seg 2) 	
  

Mapping 
reads  

(seg 3) 	
  

Mapping 
reads  
(seg4) 	
  

Mapping 
reads  

(seg 5) 	
  

Mapping 
reads  

(seg 6) 	
  

Joining step b	
  

Mapping 
reads  

(seg 1) 	
  

Mapping 
reads  

(seg 2) 	
  

Mapping 
reads  

(seg 3) 	
  

Mapping 
reads  
(seg4) 	
  

Mapping 
reads  

(seg 5) 	
  

Mapping 
reads  

(seg 6) 	
  

Joining step c 	
  

END	
  

Step a 

Step b 

Step c 

JST 

VLS 

VLS 

Virtual 
Environment 

@IS4AC 

Bowtie 

Bowtie 

Bowtie 

The size of the problem: 
•  Each run of the “step b” requires about 2GB (compressed) of reference 

genome and and about 500MB of input files 
•  It is easy to have thousands of runs to be executed over the grid 

infrastructures 

Virtual 
Environment 

@IS4AC 



HOW TO SUBMIT TO THE GRID ? 

•  The problem with this workflow is how to deal 
with grid job submission 

•  The main problems are: 
•  The used scheduler is not “grid aware” 
•  The job failure is very difficult to be handled in such 

a scenario 
•  The status of the jobs is “done” only when the 

output file is available on the common storage 
server 

•  It could be time consuming to check the status of 
each submitted job 



THE SOLUTION: USING A “GATEWAY” 

•  We already have a framework for submitting jobs over 
grid infrastructure called Job Submission Tool (JST) 

•  This is a pilot system based on the interaction with a 
Task Queue databases.  

•  The workflow itself is already managed using a 
database  
•  We can use the same tools and logic already in production at 

the Boella LAB(IS4AC). 

•  The JST is able to deal with job monitoring and re-
submission of the failed jobs  
•  It is also able to deal with the status of the stage-out 

•  JST is based on a RDBMS so it is easy to interact with 
the VLS 



•  Each of the segment is an independent tasks 
•  In order to submit and control automatically (without 

human control) all the tasks, we use a procedure made 
by few elements: 
•  DB Server -- Repository of all tasks 

•  It is really useful to monitor the running jobs  
•  It always have knowledge of done, running, undone and failed tasks 
•  Can easily deal about prioritization, dependency, different kind of 

application or different users, etc. 
•  Takes care of association between: task, executable, input and output 

files 
•  In a separate table/DB there are also monitoring information like: 

•  The exit status of each “error prone” action 
•  CE/HOST of the execution  
•  JOB_ID, TASK  
•  … 

GENERIC “JST”: PROCEDURES 



•  Job Wrapper -- manage all the general actions and make starts 
the real application on the WN 
•  It takes care of “choosing” the task to be executed (querying the DB 

server) 
•  It takes care of retrieving input files; storing output files (handling error 

conditions), updating the DB server accordingly 
•  It launches the execution of the task and handles the exit_status 

updating the DB server accordingly 
•  Job Submitter -- Submit job to different WMS 

•  It submits jobs to the grid infrastructure at different rates, taking care of 
the queued jobs 

•  It uses different WMS in order to avoid single point of failure.  
•  Job Controller -- Checks for task status and can choose action to 

be executed  
•  It can retrieve automatically the output 
•  Advice the user (in this case the DB in the VLS) for the end of a task  

GENERIC “JST”: PROCEDURES (2) 



JST SCHEMA 

UI 

DB  
WMS 

Farm1 

Farm2 
SE2 

SE1 

A series of scripts runs periodically 
on the UI to submit and control 
the jobs 

The central DB acts as a “task 
queue” for automatic job 

submission 
 

•  A simple monitoring system, based on 
a central DB, give the possibility to 
know in real time the status of each 
job and make some post-mortem 
analysis. 
•  Status of the single operation made by the 

running script  
•  Location of the jobs 



DISTRIBUTED ARCHITECTURE 

COMMON REPOSITORY 

DB 

HYPERVISOR: KVM 

JUNC TOPHAT_OUTPUT 

VLS VLS VLS 

CA 

Master Node 

System 
Agent 

Global 
Scheduler Tophat 

Bowtie Bowtie Bowtie 

Virtual Environment 

L SEG_1 

EGI/IGI Grid 

HG19 
HG19 

HG19 

WN 
Bowtie 

Bowtie 
Bowtie 

Bowtie 

HG19 

SEG_2 
SEG_3 

WN 

SEG_N 

WN 

WN 

JST 

Storage  
Element 



• JST: Grid Scheduler (Grid Environment) 
• VLS: Virtual Local Scheduler (Virtual 
Environment) 

• System Agent (monitoring agent) 
• HG19: Last Human Genome 
• CR: Common Repository - NFS 
• DataBase  
• Hypervisor – KVM 

LEGENDA 



•  The “step a” is executed as usual within the virtual 
environment on the Boella LAB, using the common repository 

•  After the completion of this step, TopHat goes on with the 
creation of the input file of the “step b” on the grid storage 
element… 

•  … and create the task for the “step b” both in the VLS and in 
the JST DBs 

•  This triggers the job submission over the grid infrastructure … 
•  … JST monitors and resubmit the jobs in case of failure  
•  If the output is correctly stored from the job on the Grid 

Storage Element the JST Job Controller updates VLS DB  
•  A daemon in the Boella LAB  transfers the output of the grid 

job from the grid storage element to the “common repository” 
•  The rest of the workflow could run as usual 

DESCRIPTION OF THE DISTRIBUTED 
WORKFLOW 



GRID PERFORMANCE 

S_1_A 

S_2_A 

S_1_B 

S_2_B 

S_1_C 

S_2_C 

S_1_D 

S_2_D 

S_1_A S_2_A S_1_B S_2_B S_1_C S_2_C S_1_D S_2_D 

FTP 

FTP 

FTP 

FTP 

FTP 

FTP 

FTP 

FTP 

Bowtie 

Bowtie 

Bowtie 

Bowtie 

Bowtie 

Bowtie 

Bowtie 

Bowtie 

Bowtie Bowtie Bowtie Bowtie Bowtie Bowtie Bowtie Bowtie 

Grid  
Storage 
Element 

Worker  
Nodes 

packBowtieSingleNode nTT *= BowtiepackFTPnmentGridEnviro TnTT += *

Execution time in a single node 

Gain time 

Execution time in grid environment 

Human Samples: A, B, C, D (S_1, S_2 for sample) 



•  The main problem in this set-up is the data transfers 
between grid storage element and the Laboratory 
where the VLS is running 

•  To run the others steps of the workflow it is needed to 
have way more bandwidth to transfer data among 
nodes 

•  We compressed all the input and output files 
•  Together with the reference genome 

•  In order to port also the other step will be needed to 
move the VLS from the laboratory network to a more fast 
network 

•  The best solution will be to deploy the VLS on a IaaS 
service on a farm with fast network  
•  WNoDeS 

OPEN ISSUES AND SOLUTIONS 



DISTRIBUTED ARCHITECTURE – NEXT 
STEP  

COMMON REPOSITORY 

DB 

HYPERVISOR: KVM 

JUNC TOPHAT_OUTPUT 

VLS VLS VLS 

CA 

Master Node 

System 
Agent 

Global 
Scheduler Tophat 

Bowtie Bowtie Bowtie 

Virtual Environment 

L SEG_1 

EGI/IGI Grid 

HG19 
HG19 

HG19 

WN 
Bowtie 

Bowtie 
Bowtie 

Bowtie 

HG19 

SEG_2 
SEG_3 

WN 

SEG_N 

WN 

WN 

JST 

Storage  
Element 

WNoDeS 



•  The porting of this kind of workflows could be of great 
interest for bioinformatics researchers as it will give the 
possibility to reduce the overall processing time 

•  Executing huge amount of runs over grid infrastructure 
could be far more easy by means of a gateways like JST 
•  That takes cares of submitting, monitoring and resubmitting the 

jobs in case of failures 

•  The size of the data poses new challenges for running on 
the grid infrastructure 

•  Exploiting cloud solution like WNoDeS could help in dealing 
with this new challenges 

CONCLUSIONS AND FUTURE WORKS 


