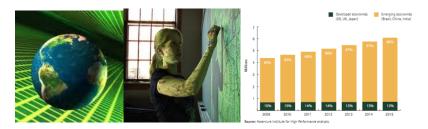


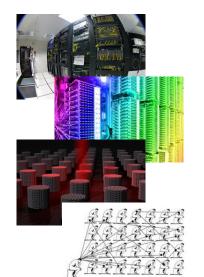
Data e-Infrastructure Initiative for Fisheries management and Conservation of Marine Living Resources

Managing Virtual Research Environments in Hybrid Data Infrastructures

Pasquale Pagano (CNR, Italy)

iMarine Technical Director


pasquale.pagano@isti.cnr.it


The Context

Science is increasingly *global*, *multipolar*, and *networked*

Data continue to grow in *Volume*, *Variety*, and collection, processing and consumption *Velocity*

The Needs

Computational environments dealing with the volume of the data Efficient and tailored storage and access technologies dealing with the variety of the data types

Elastic management of the resources dealing with the innovative approaches for collection, processing and consumption of the data

World-wide collaborative environment between distributed scientific communities dealing with the federation of heterogeneous data sources

The Solution

Hybrid Data Infrastructures

integrated technologies supporting efficient data management

D4Science Hybrid Data Infrastructure

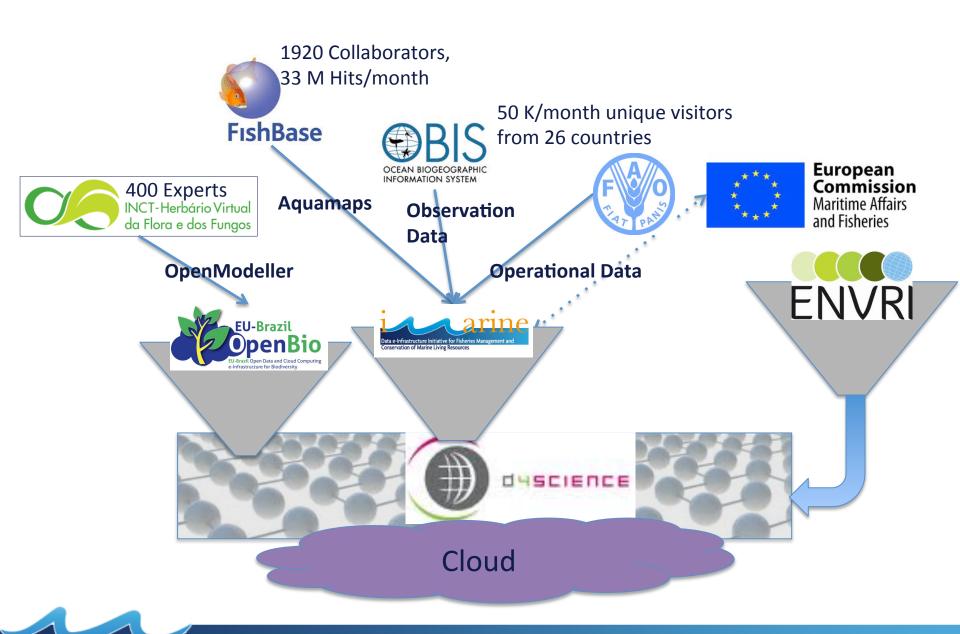
- Well suited for typical biodiversity processes
- Provides access to
 - computational and storage resources offered by commercial cloud providers
 - > new storage technologies generally identified as no-sql databases
 - distributed computing platform supporting MapReduce
 - > several algorithms for performing data analysis and mining
- Offers scalable platforms for data interoperability and efficient data management
- Offers a scalable infrastructure for efficient spatial data access, processing, and visualization (WCS, WPS, WMS, WFS)

D4Science HDI hosts biodiversity communities federated by the iMarine and the EUBrazilOpenBio initiatives

D4Science HDI will provide ENVRI RIs with seed resources

D4Science Hybrid Data Infrastructure

Support to providers willing to share hardware, data, software resources


Transparent
access to
hardware, data,
software
resources of
third-party
providers

Harmonization,
integration
mining and
analysis of
particular types of
data and support
to process
workflows

Cost effective creation, operation and maintenance of Virtual Research Environments

D4Science: example of communities

- gCube offers solutions to abstract over differences in location, protocols, and models by
 - scaling no less than the interfaced resources,
 - keeping failures partial and temporary,
 - reacting and recovering from a large number of potential issues.
- gCube turns infrastructures and technologies into a utility by offering a single registration, monitoring, and access facilities.

Information and Resource Management

Manag

Information System [1/2]

A scalable and reliable framework

- supporting an extensible notion of resource
- open to modular extensions at runtime by arbitrary third parties

- registration
- discovery
- Notification

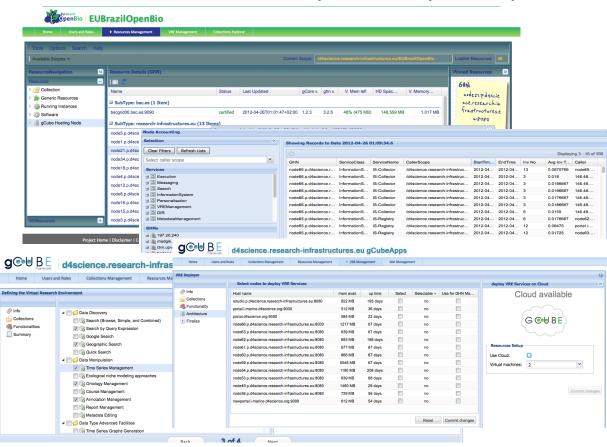
•

Hardware:

- Storage (RBDMS, blob, ColumnStore),
- Computing (gCube Container, Hadoop, EMI, Azure, ...)
- Cloud resources

Services & Applications:

- gCube Apps
- Third party Software and Applications


Data & Auxiliary Resources:

- Data sets, Metadata, Indexes, Annotations
- Schemas, Mappings, Transformation programs

Information System [2/2]

A scalable and reliable framework

- supporting an extensible notion of resource
- open to modular extensions at runtime by arbitrary third parties
- •
- Monitoring
- Inspection
- Assignment
- Accounting

Resource Management

A distributed framework managing a trusted resource network

Dynamic Deployment

• remote deployment of resources across the infrastructure

Resource lifetime management

 running of the lifetime of resources ranging from creation and publication to discovery, access and consumption

Self-elastic management

• (re-)configuration of resources across the infrastructure

Virtual Research Environment Management

• Cost effective creation, operation and maintenance of Virtual Research Environments

Interoperability, openness and integration at software level

• third-parties software can be added to the Data e-Infrastructure at runtime - Web Applications (Running in Tomcat); Web Services (Running in service containers, e.g. JAX-WS, Axis); Executable (e.g. pojo, shell script, ...)

Workflow Engine

The following list of adaptors is currently provided:

- WorkflowJDLAdaptor parses a Job Description Language (JDL) definition block and translates the described job or DAG of jobs into an Execution Plan which can be submitted to the ExecutionEngine for execution.
- WorkflowGridAdaptor constructs an Execution Plan that can contact a EMI UI node, submit, monitor and retrieve the output of a grid job.
- WorkflowCondorAdaptor constructs an Execution Plan that can contact a Condor gateway node, submit, monitor and retrieve the output of a condor job.
- WorkflowHadoopAdaptor constructs an Execution Plan that can contact a Hadoop UI node, submit, monitor and retrieve the output of a Map Reduce job.

Virtual Research Environment [1/4]

where subset of resources are securely assigned and operated to a subset of users

for a limited timeframe

at little or no cost for the providers of the infrastructure

Virtual Research Environment [2/4]

User uploads/ selects apps

 Stored in App Repo

User register/ selects data sets

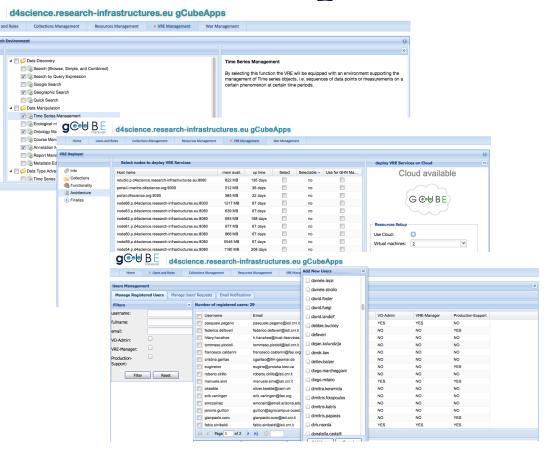
 Accessible through Mediators VRE is the hardware, data, and applications allocated for a timeframe to a group of people to support effective **collaborations**

Apps are executed on the most suitable HW

 System deploys, configures, executes and monitors

User invites other users

 System controls authentication and enforces policies


Virtual Research Environment [3/4]

Cost-effective creation and management

Definition

Creation

Configuration

Virtual Research Environment [4/4]

addresses integration and presentation requirements

when resources and researchers are widely apart when research is computationally demanding

on-demand and interactive definition

from resource pools allocated to communities pools may overlap

self-deployed and self-monitored

planned, based on match-making with redeployment on detection of load and failures

value to e-Infrastructure

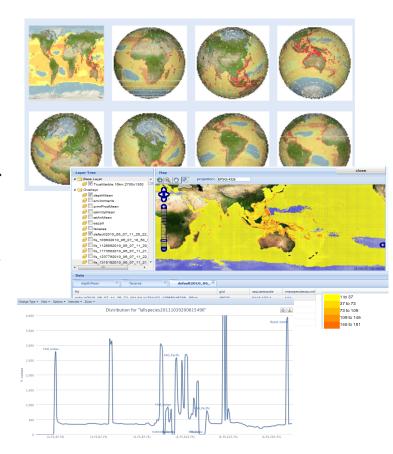
lowers operational costs encourages resource provision under federation

VREs

Exemplification

Ecological Niche Modelling

gCube Ecological Niche Modelling App is designed to


- work with dataset versions
- access to external databases
- **extensible** with predictive algorithms (aquamaps + feed-forward neural network algorithms)
- exploit several computational back-ends (multi-core server, distributed servers, and clouds)
- use several storage technologies (RDBMS, Column Store, Blob)
- publish distribution to Geospatial Web services
- support evaluation based on
 - CLASSIFICATION QUALITY ANALYSIS: given a probability distribution and a set of occurrences\absence points (True/False positives and negatives, accuracy, sensitivity, specificity)
 - DISCREPANCY ANALYSIS between two spatial distributions (variance, accuracy, mean error, ...)
 - HABITAT REPRESENTATIVENESS SCORE to assess the suitability of survey coverage for modeling the distribution of marine species

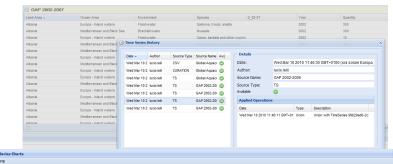
The gCube Ecological Niche Modelling App is instantiated with the four

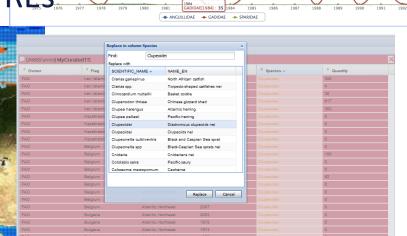
AquaMaps algorithms*

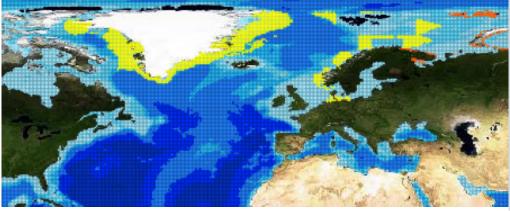
Comparable with AquaMaps Legacy application but

- Data generation is 5-times faster on a single server, and up to 50-times faster on iMarine
- Adds generation and publication of GIS layers
- Supports generation of transect
- Supports data management facilities
- Solves scalability issues

* Algorithms by Kashner et al. 2006


Timeseries App is designed to


- support the complete TS lifecycle
- manage multiple versions enriched with provenance data
- support validation, curation, and analysis (filtering, grouping, and aggregation on multidimensional data)
- provide support for data reallocation
- supports code list management through SDMX
- statistical data analysis with R
- supports a rich set of visualization
 - Chart (histogram, bar, pie, line)
 - Мар



Comparable with Google Fusion but

- data import is 40-times faster
- supports code list management through SDMX
- supports data curation
- supports a rich set of visualization
- supports sharing in and across VREs.

The D4Science Infrastructure implementing the HDI approach enables heterogeneous resource sharing between crossdomain infrastructures

Collects under a common environment resources coming from several e-infrastructures

Interacts with existing cloud infrastructures to deliver elasticity of resources

Is the result of a long experience managing distributed infrastructures for different communities and use cases

Thanks for your attention

