IBERGRID

Running Hadoop on the Cloud

Javier López Cacheiro, <u>A. Simón</u>, E. Freire, I. Díaz, A. Feijoo, P. Rey and C. Fernández

Outline

- □ Introduction
- **KVM and VM OS optimizations**
- □ Whirr
- **Hadoop results**
- **Conclusions**

Introduction

- CESGA has created hadoop startup scripts for OpenNebula.
- These scripts will be used by internal users to instantiate hadoop clusters on demand.
- □ It's possible to create N+1 clusters: 1 Master node and N Slaves (*tasktrackers* and *datanodes*).
- □ As example to start 101 hadoop cluster:
 - *start-hadoop -n 100*
- □ To stop hadoop cluster:
 - stop-hadoop <cluster_id>

Introduction

- CESGA is using KVM hypervisor for its cloud infrastructure.
- We have notice that KVM configuration should be tuned up to increase hadoop performance (XenServer already implements these configuration changes by default).
- After these changes we have compared our cluster performance with an commercial provider (Amazon).

- □ SL6 KVM version is not optimized by default to run big data.
- □ We have included these hacks to increase IO and CPU performance.
- These changes were applied to OpenNebula VM templates.
 - Activate virtio module for disk and network interfaces.
 - Use small RAW vanilla images instead QCOW2.
 - Generate extra disk storage ans swap locally for each instance.
 - Disable KVM disk cache.
 - Change VM Operating System vdx disk scheduling algorithm to deadline.
 - Set *blockdev --setra 8196 /dev/vdx*.
 - Use *host-passthrough* CPU mode.

DISK=[BUS="virtio", CACHE="none", DRIVER="raw", IMAGE_ID="hadoop", TARGET="vda", TYPE="OS"]
DISK=[BUS="virtio", CACHE="none", FORMAT="ext4", SIZE="31480", TARGET="vdc", TYPE="fs"]
NIC=[MODEL="virtio", NETWORK_ID="8"]
<pre>RAW=[DATA="<cpu mode="host-passthrough"></cpu>", TYPE="kvm"]</pre>


```
□ From VM contextualisation script:
```



```
□ From VM /etc/sysctl.conf file:
```

Minimal preemption granularity for CPU-bound tasks: # (default: 1 msec# (1 + ilog(ncpus)), units: nanoseconds) kernel.sched_min_granularity_ns = 10000000

```
# This option delays the preemption effects of decoupled workloads
# and reduces their over-scheduling. Synchronous workloads will still
# have immediate wakeup/sleep latencies.
kernel.sched_wakeup_granularity_ns = 15000000
```

swapping low. It's usually safe to go even lower than this on systems with # server-grade storage. vm.swappiness = 30

```
# The generator of dirty data starts writeback at this percentage (system default
# is 20%)
vm.dirty_ratio = 40
```


Apache Whirr

- □ A cloud-neutral way to run clusters
- □ It is built on top of Apache jclouds API
- jclouds supports 30 cloud providers including Amazon, Rackspace, OpenStack and CloudStack
- □ Work in progress to support OpenNebula
- **Example:**

whirr launch-cluster --config hadoop-ec2.properties

Hadoop ec2 contrib tools

- □ Tools included with hadoop distribution
- Legacy whirr code based on shell scripts instead of jclouds
- Easier to customize
- **Example:**

hadoop-ec2 launch-cluster hadoop-31 30

Hadoop results

□ We have startup the same number of VMs for two different clouds.

- Private cloud based on OpenNebula framework (CESGA)
- Public cloud (Amazon).
- ❑ We have repeated each test 3 times to instantiate different cluster sizes (10, 21, 51...)

Hadoop results

#VMs	Amazon EBS Whirr (m1.small)	Amazon EBS without Whirr (m1.small)	CESGA ON (small)
10 VMs	14m51s	3m11s	5m40s
21 VMs	27m50s	2m58s	4m53s
51 VMs	NA	9m43s	13m03s
101 Vms	NA	4m57s	18m31s

□ Small instances (1MB, 1 CPU)

Conclusions

OpenNebula

- □ Tuning needed to reduce the 2 hours deployment time.
- Combined usage of NFS datastore and local deployment reduces deployment time to 15 min (101 nodes).

Conclusions

Amazon EC2

- \Box Amazon limits the request rate \rightarrow whirr/jclouds produce too many requests.
- □ Whirr is not able to launch cluster larger than 20 nodes in Ireland region.
- Hadoop src/contrib/ec2 scripts (legacy whirr) only support very old hadoop versions.
- □ Customized launch script (based on the ON/Fedcloud one) solved these issues.
- □ Impressive launch times when using EBS as root: as low as 5 min (101 nodes).
- □ Unable to launch a complete cluster: from 51 nodes we always get several problematic nodes (usually caused by an internal problem in Amazon with the security group).

Thank You For Your Attention! Questions?

08 of June 2011

Ibergrid 2011- Santander 15