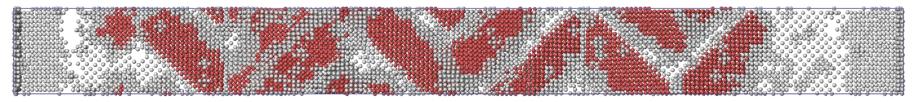
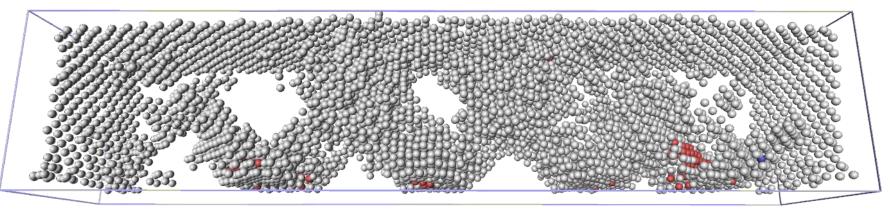


Application of the Science Gateway Portal on the Basis of WS-PGRADE Technology for Simulation of Aggregation Kinetics and Molecular Dynamics Simulations of Metal-Organic Nanostructure

O.Baskova, O.Gatsenko, L.Bekenev, E.Zasimchuk and Yuri Gordienko


G.V.Kurdyumov Institute for Metal Physics (IMP), National Academy of Sciences, Kiev, Ukraine

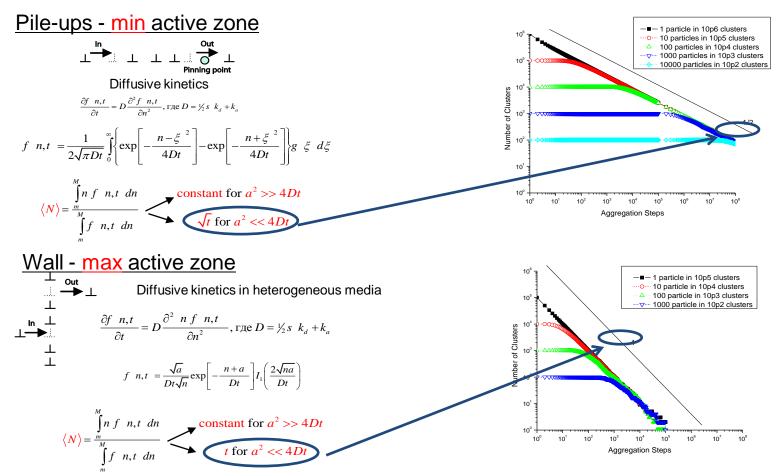


Scientific Problem: nanoscale research & manufacturing

Increase a range of simulated parameters and find their "magic" (critical) values for atomic self-organization and nanoscale manufacturing.

2D super-lattice on AI surface

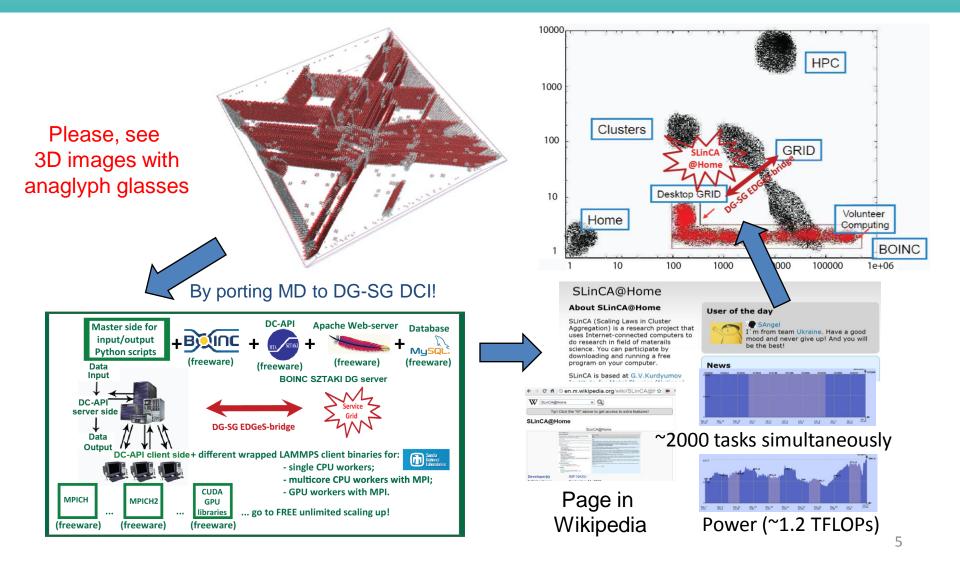
3D hierarchic network of voids in Al bulk


Available Computing Infrastructure

- Local Cluster (MPI jobs)
- Service Grid (as a part of the National Grid Initiative)
- Desktop Grid "SLinCA@Home" connected to SG by EDGeS-bridge (made during EDGeS and DEGISCO EU FP7 projects)

BUS Monte Carlo app (cluster, DCI on Desktop Grid)

Theory


Simulations in Desktop Grid

Gatsenko, Baskova, Gordienko, Proc. of Cracow Grid Workshop (CGW'09), Cracow, Poland, pp.264-273 (2010) 4 Gordienko, International Journal of Modern Physics B (2012), online: Arxiv preprint arXiv:1104.5381 (2011)

Molecular Dynamics by LAMMPS (cluster, DCI on DG)

SCI-BUS Typical User Scenario in Molecular Dynamics Simulations

- <u>Design/code</u> the physical process (actors, interactions)
 - atoms, potentials, forces, ambience, etc. (small in LAMMPS 4GL script)
- <u>Design/code</u> the initial configuration of atoms (positions and velocities of atoms)
 - input datafile (BIG in LAMMPS text format)
 - input file (small in LAMMPS 4GL script)
- <u>Schedule/code</u> the output (snapshots of positions and velocities - **BIG**, physical properties - **small**)

What is the Main Aim of scientist?

"A mathematician is a device for turning coffee into theorems."

Alfréd Rényi prominent Hungarian mathematician

Brute-force generalization: "A scientist is a device for turning anything (coffee, time, money, ...) into publications."

(C) YG :)

What is the essence of scientific publication (in materials science, at least)? Many-page text is IMPORTANT, but essence of paper are: plots, figures, photos!

Well-structured information (post-processed data)!

Main Aim (in short): run simulation to get publication (by clever post-processing the rough data)!⁷

Previously Used Workflow

Task	Software	Infrastructure	Runtime				
Molecular Dynamics (MD) simulation							
Large samples (10 ⁵ -10 ⁶ atoms)	LAMMPS (MPI-binary)	Cluster	>1-10 ∞ days				
Many (~10 ³) small (10 ² - 10 ⁴ atoms) samples	LAMMPS (sequential binar	DCI (BOINC Desktop ry) Grid + Service Grid)	>1-100 hours				
Post-processing							
Derivative physical values	debyer, XRD, ND,	Desktop, cluster	>1-100 hours				
Statistics on results	R (no binary)	Desktop, cluster	>1-10 hours				
Visualization							
3D cross-sections for many (10²) snapshots	Ovito (GUI- only), AtomEye	Desktop, cluster	>1-100 hours				
3D video of evolution	ffmpeg	Desktop, cluster, DCI	>1-10 min				

Technical Problems and Ways to Solution

1. Heterogeneous software (binaries, scripts, data formats) of various kinds:

de facto standard (R, LAMMPS, AtomEye, ffmpeg, ...) newly born (Ovito, debyer, pizza, ...)

- > WS-PGRADE: WF with closed jobs linked in LEGO-style
- Heterogeneous hardware (local, cluster, DCI)
 > gUSE: resources customized for different jobs.
- 3. Complex manual operation for their reconciliation > WF with "provide input"/"get output" needs only
- Ad hoc change of physical process after initial data output
 > multistage WF with intermediate output
- Long learning curve for usual scientists as to DCI internals
 > user-friendly WF constructor and GUI for input/output

Main Milestones to Aim

- 1. Smooth access to heterogeneous software & hardware
- 2. Division of roles:
 - a) Admin (expert in Computer Science?): portal activities,
 - b) Power User (principal scientist): science task formulation,
 - **c)** User (scientists, students): science task operation (run simulation, post-process data, visualization)
- 3. More complex WF (added modules, ad hoc changes, ...), BUT(!)
- 4. ... NO additional complexities (Q: is it naive? A: NO!):
 - 1. NO changes in executables (they are already used!)
 - 2. NO changes in input/output formats (linked to executables)
 - 3. ALL changes by scripts & command line arguments ONLY
- 5. Short learning curve for "non-Computer-Science" scientists

Desirable User Scenarios

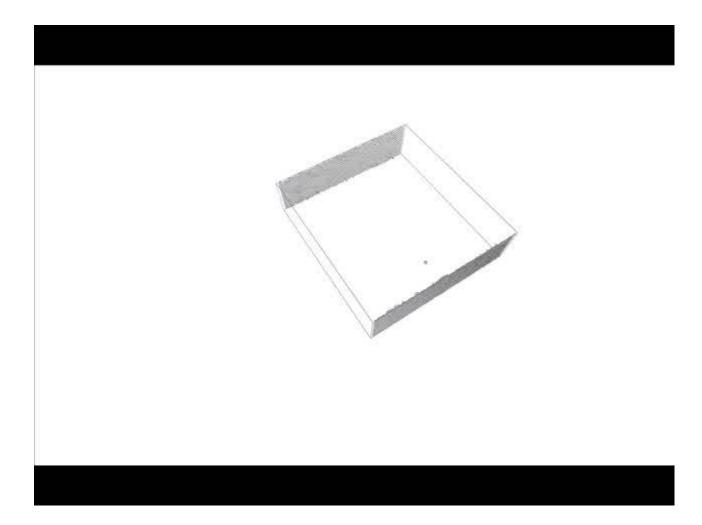
Basic idea: separate the "physics" and "computer science" activities.

Power User (scientific task -> definition only):

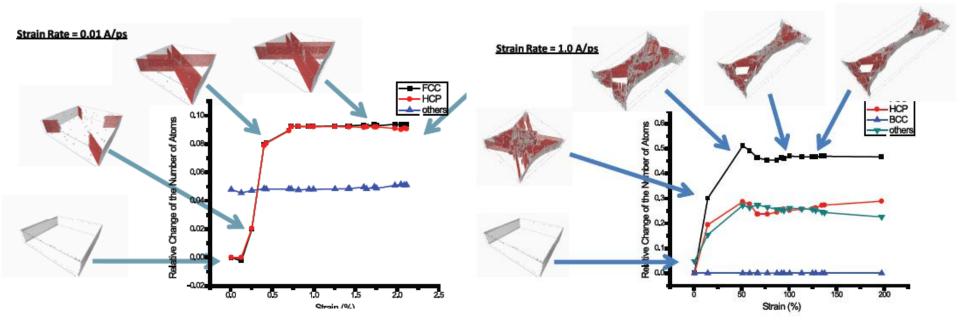
Actually design/code a physical process

End User (scientific task -> operation only):

- Manage numerous jobs (submit, monitor, report) by user-friendly interface
- Monitor progress of calculations
- Get results for post-processing and interpretation.


- 1. mechanical properties (strength, plasticity,...) of a nanocrystal under various conditions
- 2. ... of an ensemble of nanocrystals under the same conditions
- 3. manipulations with graphene tension, impact, etc.
- 4. ... with carbon nanotubes (CNTs) adsorption, conductance, strength, ...
- 5. ... with complex metal-organic compounds.

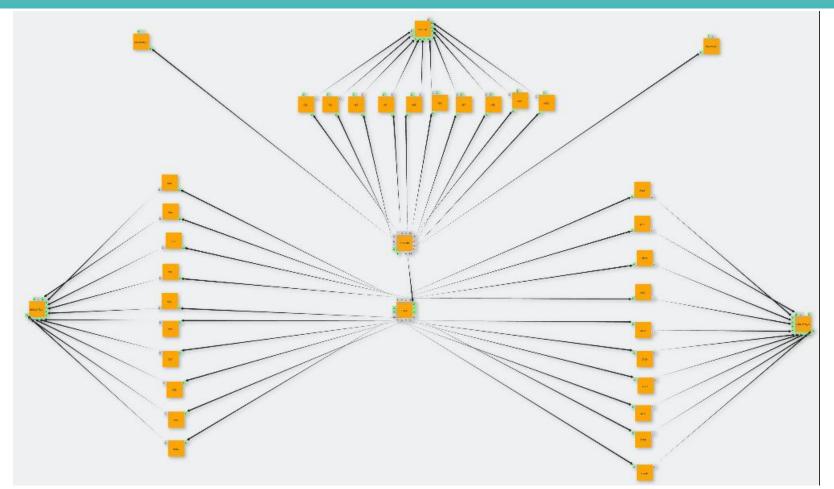
Use Case 1: Tension of nanocrystal under different conditions



Typical Example: tension of Al nanocrystal

Post-processing tasks: strain-stress, defect evolution...

External mechanical influence with different values of strain rate...



How it can be implemented?

Let's see at the example of WS-PGRADE-based workflow for this Use Case 1

Typical definition of LAMMPSworkflow (Power User role)

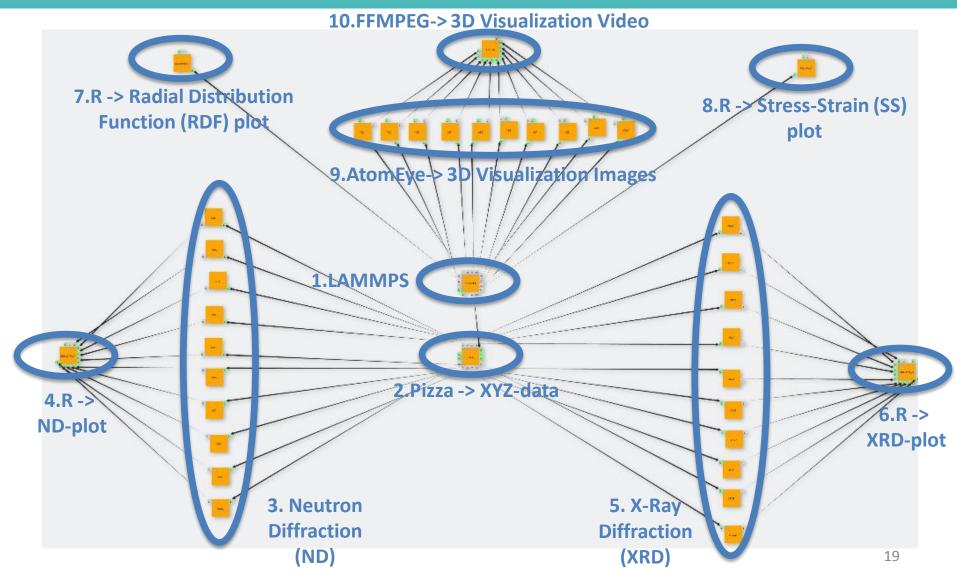
Simple scheme, BUT big work behind curtains for reconciliation of various modules: binaries, data input-output formats, etc.

Typical execution of LAMMPSworkflow (End User role)

IMP SciGate portal (WS-PGRADE+gUSE)

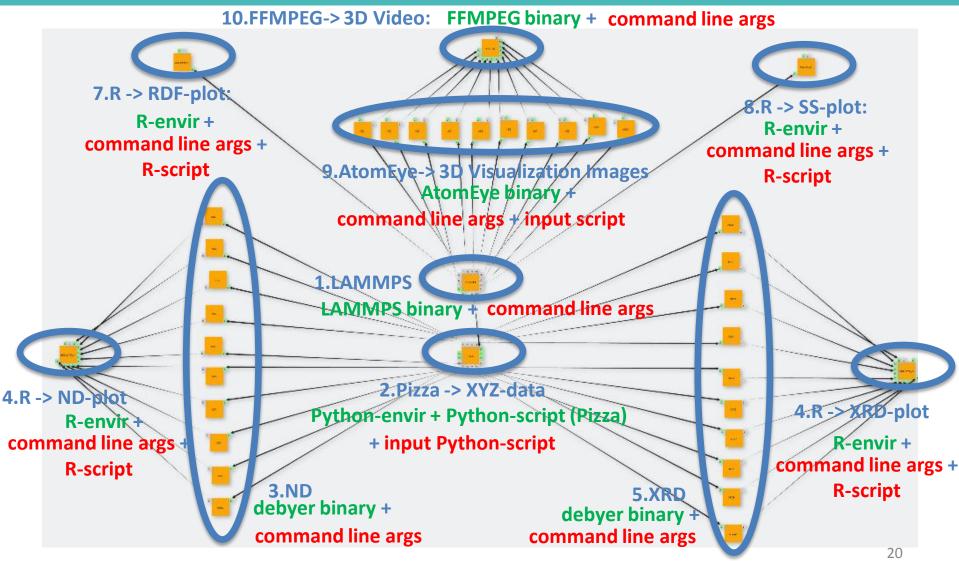
mEye-R (T_RUNNAE SHED SHED SHED SHED SHED SHED			Show Instances show Instances show Instances show Instances show Instances show Instances show Instances		
SHED SHED SHED SHED SHED	BLE		ihow Instances ihow Instances ihow Instances ihow Instances		
SHED SHED SHED SHED SHED	BLE		ihow Instances ihow Instances ihow Instances ihow Instances		
SHED SHED SHED SHED SHED	BLE		ihow Instances ihow Instances ihow Instances ihow Instances		
SHED SHED SHED SHED			ihow Instances ihow Instances ihow Instances ihow Instances		
SHED SHED SHED SHED		0 0 0	ihow Instances ihow Instances ihow Instances		
SHED SHED SHED SHED		10 10	ihow Instances		
SHED SHED SHED		9	ihow Instances		
SHED SHED		s			
SHED		- 19	ihow Instances		
cure .			Show Instances		
SHED		S	Show Instances		
SHED		S	Show Instances		
SHED		s	Show Instances		
SHED		s	Show Instances		
SHED		s	Show Instances		
SHED		s	Show Instances		
INING		S	Show Instances		
		s	how Instances		
SHED					
	SHED	SHED	SHED S		

Monitoring the state of jobs in the workflow:

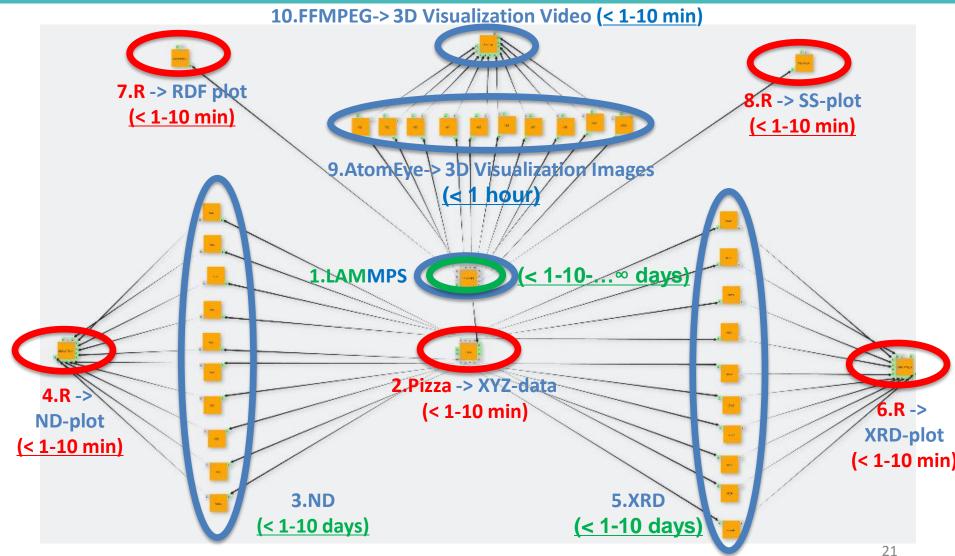

> RUNNING FINISHED ERROR INITIATED

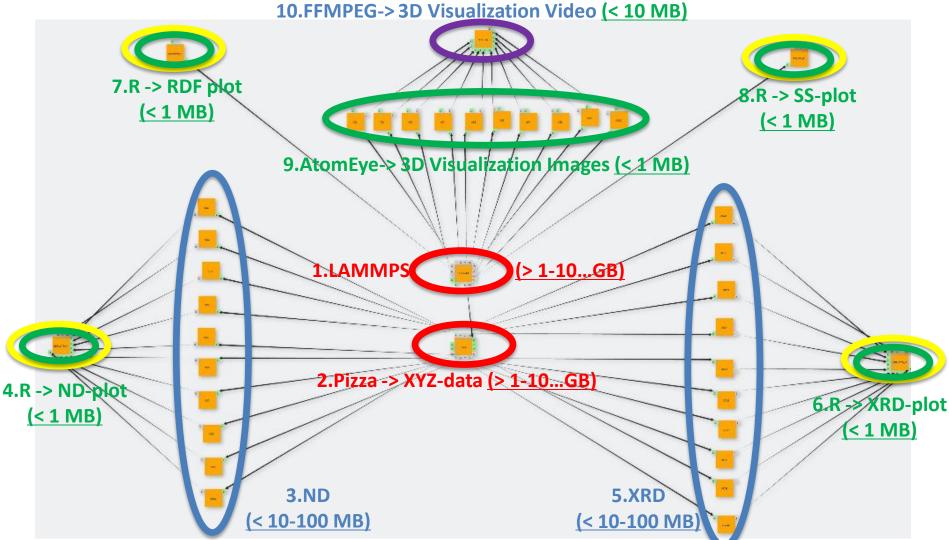
Monitoring the workflows

Welcome	Workflow	Storage	Settings	Information	Statistics	Publications	Help	End User	Security
iferay Inform	mation $ ightarrow$ WFI m	nonitor							
VFI monitor									
Workflow name		Number of jobs		State		State of jobs			
						init		0	
							WFI managed Jobs of the Workflow3		
nauthorized access.		37		runni	ng/error	running		1	
						finishe	d	2	
							error		1

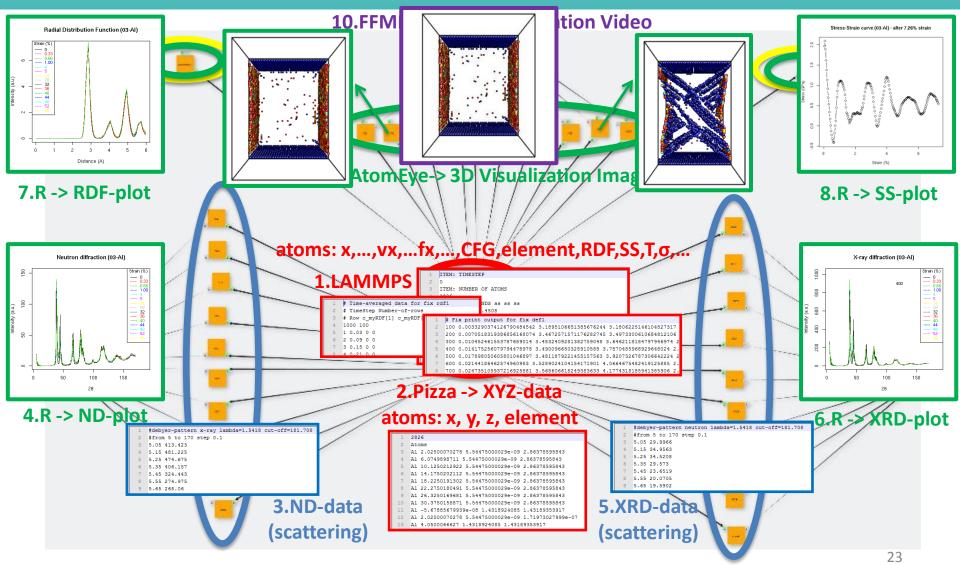

Demo for Use Case 1: <u>http://scigate.imp.kiev.ua/liferay/web/guest/lammps-wf</u>

WF-components: LAMMPS+Pizza+ AtomEye+XRD+ND+R+FFMPEG

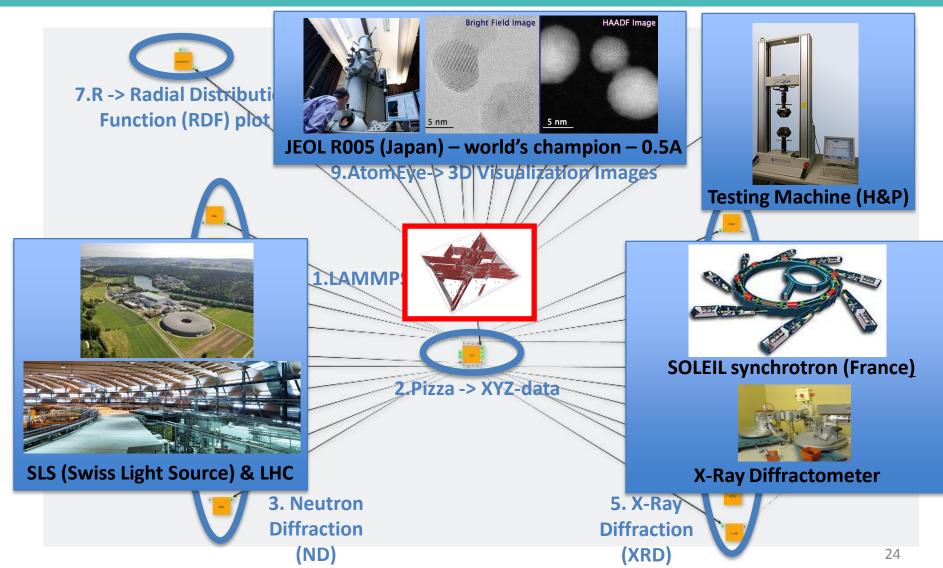



Invariant (execs & envir) and variable (input & scripts) parts

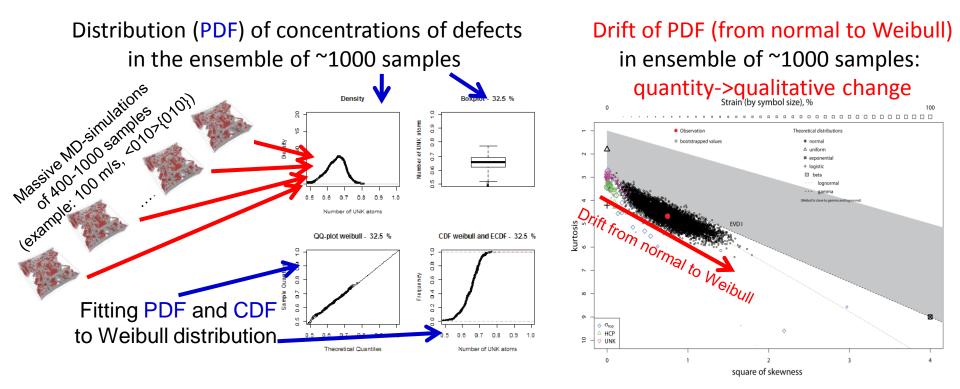
Job Runtime (Resources): Short (Server)+Med (DCI)+Long (Cluster)



SCI-BUS Output Data: HUGE text + SMALL text + PLOTE + IMAGES + VIDEO

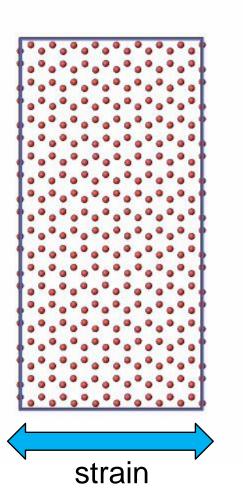


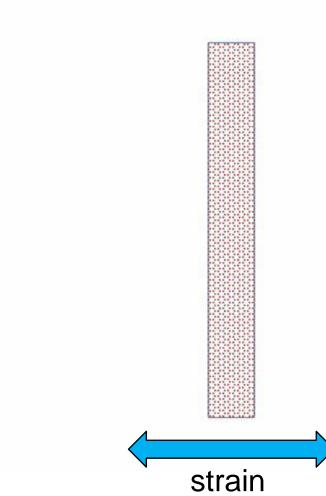
Results: Rough + Processed + PLOTS + IMAGES + VIDEO



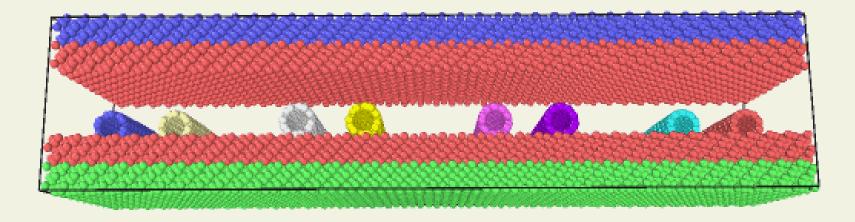
Workflow as a Hub for Virtual Experimental Labs in Physics

Use Case 2: Set of nanocrystals different statistical realizations


Parameter sweeping allow to find transition from quantity to new quality: observe change of defect distribution with strain, i.e. change of deformation mode!



Use Case 3: Graphene behavior for various parameters


Size: 2x4 nm

Size: 2x16 nm

Use Case 4: Manipulations with carbon nanotubes

Detachment of m-CNTs after application of driving force per atom **F=0.17 eV/A** and usage of the second Si-substrate ("stamp") in the presence of s-CNTs: two m-CNT c(6,6); two s-CNT c(7,5), two s-CNT c(9,2), and two m-CNT c(10,0) (from left to right).

From Milestones -> to Conclusions

- 1. Smooth access to heterogen. soft & hard? YES (soft), MAYBE (hard)
- 2. Division of roles? YES (at least, 3 levels)
 - a) Admin: portal activities **Q:Expert in comp.sci? A.NO!**
 - b) Power User (principal scientist): science task formulation -> WF definition
 - c) User (scientists, students): science task operation (simulate, post-process, visualize) -> WF usage (input, start, stop, output)
- 3. More complex WF (added modules, ad hoc changes, ...) -> YES
- 4. ... LOW level of added complexities: Q: is it true? A: YES!
 - 1. NO changes in binaries -> YES
 - 2. NO changes in input/output formats -> YES, but with intermediate conversion scripts

3. ALL changes by scripts & command line arguments -> YES

5. Short learning curve for usual scientists? -> YES, shorter

Hardships (non-critical)

Small number of ports (MAX=16 for gUSE 3.5.5 at the moment)

- limit scale-up for additional modules (now job-replicator is used)

- Output file naming convention (alphanumeric only)
 - cause problems with legacy code with special symbols
- Info like "stdout" and "stderr" are not provided ("No information ..." message only) for some errors in WS-PGRADE
- Sometimes "stdout" from binary goes to "stderr" of portal (why?)

Questions (recommendations) to developers of...

WS-PGRADE

- More ports in jobs?
- High-level constructions (LOOP, SWITCH, ...)?

<u>gUSE</u>

- More detailed step-by-step "Use-Case Guides" for
 - configuration of connection to various (ARC, Google) resources,
 - complex workflows with conditional branching,
 - best practices (from your experience) on users/resources management

Thank you for efforts in making these things possible and for your attention!