EISCAT Scientific A Social of SCAT_3D – European 3D imaging radar for atmospheric and geospace research

EISCAT Scientific Association, Kiruna, Sweden

EISCAT multi-site research infrastructure

studies how Earth's atmosphere is coupled to space **is uniquely located** for studies into arctic ionosphere

current members

📒 China

+ Finland

🖲 Japan

He Norway

Sweden

Wited Kingdom

How will it look?

Baseline: core site & 4 remote sites

community agrees on list of 7 potential sites will permit observations combined with rocket flights from Andoya in Norway and Esrange in Sweden

Measurement Capability Comparison									
Measurement Type	Current UHF t/s	Future E3D t/s	Improvement Factor* better than:						
Isotropic parameters: 110 km altitude	1.0	0.1	10						
Isotropic parameters: 300 km altitude	5.0	0.2	25						
Vector velocities: 110 km altitude	500.0	10.0	50						
Vector velocities: 300 km altitude	2000.0	25.0	80						
Monitoring standard data products at 70 - 1200 km: n _e ,T _e T _i , v _i									
E3D New Measurement Capabilities instantaneous, adaptive control of beam positions simultaneous multiple beams/interlaced beams high-resolution coding of polarisation, phase and amplitude aperture synthesis imaging – small-scale 3D imaging(sub-beam-width) multi-beam volume imaging – large-scale 3D imaging full-profile vector measurements – large/small-scale 3D vector imaging high-speed object tracking * estimated for 3 MW Tx: improvement at least x 10 better									

3) integration time, t for 1% accuracy ne, Te Ti; 1% accuracy \underline{v} at plasma density of 2 x 1011 m-3, within 100,000 km2 of core site, assuming five remote stations, same transmitter power as the current EISCAT

Implementation Time Line 2014 - 2021

2014	2015	2016	2017	2018	2019	2020	2021			
Preparation										
			Constr	ruction						
Total Funding Profile Investment including staff for installation work										
4 M€	32M€	38M€	33M€	16M€	4M€	4M€	4M€			
EISCAT Operational Costs including regular staff										
3.4M€	6M€	7M€	7.2M€	8.3M€	8.7M€	9.2M€	9.3M€			

EISCAT_3D (in 2D)

- Transmission
 - 10MW
 - High modulation
 - Radial resolution
- Reception
 - Multiple narrow beams
 - Angular resolution
- Tx+Rx
 - Volumetric data
- Multisite
 - Distrbuted receivers
 - Wind fields

Design Study: system diagram

Data flow

- Each antenna
 - 30 Msamples/s (120MB/s)
- Antenna group (core site)
 - Computes a number of (broad) beams from a small number of antennas (FPGAs)
 - 100 antennas \rightarrow 1 beam 2 polarisations
 - At 30 MHz IQ this is 32 * 30 * 2 = 2 Gbit/s/group
 - These data are stored in a ringbuffer
 - 160 groups \rightarrow 125 TB/h

Data flow

- 2nd stage beamforming
 - 160 antenna groups \rightarrow 100 beams
 - Decimation to 1MHz
 - More or less continous sampling 32bit words (I/Q)
 - -100*1e6*2*32 \rightarrow 1GB/s
 - Two 10MHz bands correlated data $\,\rightarrow\,$ 2GB/s
 - In total 10TB/h to be stored in archive

On-site computation

- 2nd stage beamforming
 - 160 antenna groups \rightarrow 100 beams
 - Decimation to 1MHz \rightarrow 200 Gflop/s
 - Final beams \rightarrow 5-10 Tflop/s
- Lag profile inversion
 - 2-3 Tflops/s/beam
- Total
 - 5-10 + beams*(2-3) Tflops
 - 8-13 Tflops for 1 beam
 - 200-300 Tflops/s for 100 beams

On-site computation

Central computing CPU/GPU

11

Datastaging

- One want occasionally do offline work on the ringbuffer data
 - Need transfer to HPC
 - Link or physical transport
 - 1Tb/s \rightarrow 1 month, better to do the calcs on-site?
 - 125 TB/h * 1 day \rightarrow 3 PB
 - In total ~10PB storage at HPC (72h data)
 - HPC computing
 - Higher resolutions (spatial and time)
 - 4Pflop/s*24h \rightarrow 10⁵ Pflop

EISCAT needs

- Now, EISCAT
 - Small, EISCAT archive (1981-2013) 60TB
- EISCAT_3D 1st stage (2018)
 - Moderate, EISCAT archive 1PB/year
 - 2-3 Mirrors (North + South Europe+Japan)
 - Analyis software + Search engines
 - HPC for detailed studies/developments
 - Storage 1PB, 1Pflop/run
- EISCAT_3D 2nd stage (2023)
 - High, EISCAT archive 10PB/year
 - HPC, Storage 10PB, 10 Eflop/run

EISCAT data

- 4 levels of data
 - Raw antenna (group) data
 - 1 day ringbuffer, 10 PB
 - Voltage beam formed data
 - 10 PB/year
 - Correlated data
 - 1 PB/year
 - Analysed data
 - 1GB/year (in ENVRI)
- Formats in disussion within CoopEUS
 - hdf5

Archive software

- To go to higher levels of data
 - Beamforming 1->2
 - Lag profiling 2->3
 - Fitting to physical quantities 3->4
- Search engines for all levels of data
 - Find specific signatures
 - At all levels
 - Plasma features, meteors, space debris, astronomical features
- Redo steps
 - New information from searches or external sources
 - Software bugs