
TCP Tuning

Domenico Vicinanza
DANTE, Cambridge, UK

domenico.vicinanza@dante.net

EGI Technical Forum 2013, Madrid, Spain

2 Connect | Communicate | Collaborate

	

TCP

! Transmission Control Protocol (TCP)
! One of the original core protocols of the Internet protocol suite (IP)
! >90% of the internet traffic
! Transport layer
! Delivery of a stream of bytes between

!   programs running on computers
!   connected to a local area network, intranet or the public Internet.

! TCP communication is:
!   Connection oriented
!   Reliable
!   Ordered
!   Error-checked

! Web browsers, mail servers, file transfer programs use TCP

3 Connect | Communicate | Collaborate

	

Connection-Oriented

! A connection is established before any user data is transferred.
! If the connection cannot be established the user program is

notified.
! If the connection is ever interrupted the user program(s) is

notified.

4 Connect | Communicate | Collaborate

	

! TCP uses a sequence number to identify each byte of data.
! Sequence number identifies the order of the bytes sent
! Data can be reconstructed in order regardless:

!   Fragmentation
!   Disordering
!   Packet loss
that may occur during transmission.

! For every payload byte transmitted, the sequence number is
incremented.

Reliable

5 Connect | Communicate | Collaborate

	

! The block of data that TCP asks IP to deliver is called a TCP
segment.

! Each segment contains:
!   Data
!   Control information

TCP Segments

6 Connect | Communicate | Collaborate

	

TCP Segment Format

Destination Port

Options (if any)

Data

1 byte	
 1 byte	

Source Port

Sequence Number
Acknowledgment Number

1 byte	
 1 byte	

offset Reser. Control Window
Checksum Urgent Pointer

7 Connect | Communicate | Collaborate

	

Client Starts

! A client starts by sending a SYN segment with the
following information:
!   Client’s ISN (generated pseudo-randomly)
!   Maximum Receive Window for client.
!   Optionally (but usually) MSS (largest datagram

accepted).

8 Connect | Communicate | Collaborate

	

Server Response

! When a waiting server sees a new connection request, the
server sends back a SYN segment with:
!   Server’s ISN (generated pseudo-randomly)
!   Request Number is Client ISN+1
!   Maximum Receive Window for server.
!   Optionally (but usually) MSS

9 Connect | Communicate | Collaborate

	

Connection established!

! When the Server’s SYN is received, the client sends back
an ACK with:
!   Acknowledgment Number is Server’s ISN+1

10 Connect | Communicate | Collaborate

	

SYN	

ISN=X	

Client Server

SYN	

ISN=Y ACK=X+1	

ACK=Y+1	

In blocks:

11 Connect | Communicate | Collaborate

	

Cumulative acknowledgement

! Cumulative acknowledgment:
!   The receiver sends an acknowledgment when it has received all

data preceding the acknowledged sequence number.
! Inefficient when packets are lost.
! Example:

!   10,000 bytes are sent in 10 different TCP packets and
!   the first packet is lost during transmission.
!   The receiver cannot say that it received bytes 1,000 to 9,999

successfully
!   Thus the sender may then have to resend all 10,000 bytes.

TCP Packets

12 Connect | Communicate | Collaborate

	

Selective acknowledgment

! Selective acknowledgment (SACK) option is defined in RFC 2018
! Acknowledge discontinuous blocks of packets received correctly
! The acknowledgement can specify a number of SACK blocks
! In the previous example above:

!   The receiver would send SACK with sequence numbers 1000 and
9999.

!   The sender thus retransmits only the first packet, bytes 0 to 999.

TCP Packets

13 Connect | Communicate | Collaborate

	

! TCP works by:
!   buffering data at sender and receiver

Buffering

Image source: http://codeidol.com/img/csharp-network/f0502_0.jpg

14 Connect | Communicate | Collaborate

	

Dynamic transmission tuning

! Data to send are temporarily stored in a send buffer
!   where it stays until the data is ACK’d.

! The TCP layer won’t accept data from the application
unless there is buffer space.

! Both the client and server announce how much buffer
space remains
!   Window field in a TCP segment, with every ACK
!   TCP can know when it is time to send a datagram.

15 Connect | Communicate | Collaborate

	

Flow control

! Limits the sender rate to guarantee reliable delivery.
! Avoid flooding
! The receiver continually hints the sender on how

much data can be received
! When the receiving host buffer fills

!   the next ack contains a 0 in the window size
!   this stop transfer and allow the data in the buffer

to be processed.

16 Connect | Communicate | Collaborate

	

TCP Tuning

! Adjust the network congestion
avoidance parameters for TCP

! Typically used over high-bandwidth,
high-latency networks
!   Long-haul links (Long Fat

Networks)
!   Intercontinental circuits

! Well-tuned networks can perform up
to many times faster

17 Connect | Communicate | Collaborate

	

Tuning buffers

! Most operating systems limit the amount of system
memory that can be used by a TCP connection.

! Maximum TCP Buffer (Memory) space.
! Default max values are typically too small for network

measurement and troubleshooting purposes.
! Linux (as many OSes) supports separate send and

receive buffer limits
! Buffer limits can be adjusted by

!   The user
!   The application
!   Other mechanisms

! within the maximum memory limits above.

18 Connect | Communicate | Collaborate

	

BDP Bandwidth Delay Product

! BDP=Bandwidth * Latency
! Number of bytes in flight to fill path
! Max number of un-acknowledged packets on the wire
! Max number of simultaneous bits in transit between

the transmitter and the receiver.
! High performance networks have very large BDPs.

19 Connect | Communicate | Collaborate

	

TCP receive buffer

! Amount of data that a computer can store without
acknowledging the sender.

! It can limit throughput
!   even if there is no packet loss in the network!

! TCP transmits data up to the buffer size before waiting for
the ack

! Therefore the full bandwidth of the network may not
always get used.

𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 ≤ 𝑇𝐶𝑃 𝑅𝑒𝑐𝑒𝑖𝑣𝑒 𝑏𝑢𝑓𝑓𝑒𝑟/𝑅𝑇𝑇 

20 Connect | Communicate | Collaborate

	

Optimising buffers

! TCP receiver and sender buffers needs tuning
! They should be ideally equal to BDP to achieve

maximum throughput
! The sending side should also allocate the same

amount of memory
! After data has been sent on the network

!   the sending side must hold it in memory until it
has been ack’d

!   If the receiver is far away, acks will take a long
time to arrive.

!   If the send memory is small, it can saturate and
block transmission.

21 Connect | Communicate | Collaborate

	

Madrid-Mumbai
Bandwidth

TCP	 Bandwidth	

0
100
200

300
400
500
600

700
800
900

0 5000 10000 15000 20000 25000 30000 35000
Buffer	 size	 KByte

BW
	 M

bi
t/
s

22 Connect | Communicate | Collaborate

	

Madrid-Mumbai
Retransmission

TCP	 -‐	 %	 Retransmission

0

5

10

15

20

25

30

0 5000 10000 15000 20000 25000 30000 35000
Buffer	 size	 KByte

%
	 re

tr
an
s

23 Connect | Communicate | Collaborate

	

BDP as optimal buffer parameter

TCP	 Bandwidth	

0
100
200

300
400
500
600

700
800
900

0 5000 10000 15000 20000 25000 30000 35000
Buffer	 size	 KByte

BW
	 M

bi
t/
s

TCP	 -‐	 %	 Retransmission

0

5

10

15

20

25

30

0 5000 10000 15000 20000 25000 30000 35000
Buffer	 size	 KByte

%
	 re

tr
an
s

Bandwidth increases
with buffer size until it
reaches BDP

RTT ~168ms
Bandwidth limit to
1GE interface
è ~20 Mbytes.

24 Connect | Communicate | Collaborate

	

Checking send and receive buffers

! To check the current value type either:
$ sysctl net.core.rmem_max

net.core.rmem_max = 65535
$ sysctl net.core.wmem_max

net.core.wmem_max = 65535

! or
$ cat /proc/sys/net/core/rmem_max

65535
$ cat /proc/sys/net/core/wmem_max

65535

25 Connect | Communicate | Collaborate

	

Setting send and receive buffers

! To change those value simply type:
sysctl -w net.core.rmem_max=33554432

sysctl -w net.core.wmem_max=33554432
! In this example the value 32MByte has been chosen:

 32 x 1024 x 1024 = 33554432 Byte

26 Connect | Communicate | Collaborate

	

Autotuning buffers

! Automatically tunes the TCP receive window size for each individual
connection

! Based on BDP and rate at which the application reads data from the
connection

! Linux autotuning TCP buffer limits can be also tuned
! Arrays of three values:

!   minimum, initial and maximum buffer size.
! Used to:

!   Set the bounds on autotuning
!   Balance memory usage while under memory stress.

! Controls on the actual memory usage (not just TCP window size)
!   So it includes memory used by the socket data structures

! The maximum values have to be larger than the BDP
! Example: for a BDP of the order of 20MB, we can chose 32MB

27 Connect | Communicate | Collaborate

	

Check and set autotuning buffers

! To check the TCP autotuning buffers we can use sysctl:
$ sysctl net.ipv4.tcp_rmem
4096 87380 65535

$ sysctl net.ipv4.tcp_wmem

4096 87380 65535
! It is best to set it to some optimal value for typical small flows.
! Excessively large initial buffer waste memory and can even hurt

performance.
! To set them:

$ sysctl -w net.ipv4.tcp_rmem="4096 87380
33554432"

$ sysctl -w net.ipv4.tcp_wmem="4096 87380
33554432"

28 Connect | Communicate | Collaborate

	

Checking and enabling autotuning

! TCP autotuning is normally enabled by default.
! To check type:

 $ sysctl net.ipv4.tcp_moderate_rcvbuf
 1

or
 $ cat /proc/sys/net/ipv4/tcp_moderate_rcvbuf
 1

! If the parameter tcp_moderate_rcvbuf is present and has value 1 then
autotuning is enabled.

! With autotuning, the receiver buffer size (and TCP window size) is
dynamically updated (autotuned) for each connection

! If not enabled, it is possible to enabled it by typing:
 $ sysctl -w net.ipv4.tcp_moderate_rcvbuf=1

29 Connect | Communicate | Collaborate

	

Interface queue length

! Improvement at NIC driver level
! Increase the size of the interface queue. To do this, run the following

command.
 $ ifconfig eth0 txqueuelen 1000

! TXQueueLen: max size of packets that can be buffered on the egress

queue of a linux net interface.
! Higher queues: more packets can be buffered and hence not lost.
! In TCP, an overflow of this queue will cause loss

!   TCP will enter in the congestion control mode

30 Connect | Communicate | Collaborate

	

Additional tuning

! Verify that the following variables are all set to the default value of 1
net.ipv4.tcp_window_scaling

net.ipv4.tcp_timestamps

net.ipv4.tcp_sack

Otherwise set them using

$ sysctl –w net.ipv4.tcp_window_scaling = 1

$ sysctl –w net.ipv4.tcp_timestamps = 1

$ sysctl –w net.ipv4.tcp_sack = 1

31 Connect | Communicate | Collaborate

	

What not to change

! We suggest not to adjust tcp_mem unless there is some specific need.
! It is an array that determines how the system balances the total

network buffer space
!   against all other LOWMEM memory usage.

! Initialized at boot time to appropriate fractions of the available system
memory.

! In the same way there is normally no need to adjust rmem_default or
wmem_default
!   These are the default buffer sizes for non-TCP sockets (e.g. unix

domain and UDP sockets).

32 Connect | Communicate | Collaborate

	

Congestion window and slow start

! Congestion window:
!   Estimation how much congestion there is between sender and

receiver
!   It is maintained at the sender

! Slow start: increase the congestion window after a connection is
initialized and after a timeout.
!   It starts with a window of 1 maximum segment size (MSS).
!   For every packet acknowledged, the congestion window increases

by 1 MSS
!   The congestion window effectively doubles for every round trip time

(RTT).
!   Actually not so slow…

33 Connect | Communicate | Collaborate

	

TCP Congestion control

! Initially one algorithm available Reno
! Linear increment of the congestion window
! It typically drops to half the size when a packet is lost
! Starting from Linux 2.6.7, alternative congestion control algorithms

were implemented
!   recover quickly from packet loss on high-speed and high BDP

networks.
! The choice of congestion control options is selected when the kernel is

built.

34 Connect | Communicate | Collaborate

	

Some congestion control examples

The following are some of the options are available in the 2.6 kernel:
! reno: Traditional TCP used by almost all other OSes (default with old

Linux kernel).
!   It adjusts congestion window based on packet loss.
!   The slow start has an additive Increase window on each Ack and
!   a Multiplicative Decrease on loss

! cubic: Faster (cubic function) recovery on packet loss
!   Efficient for high-BDP network

! bic: Combines two schemes called additive increase and binary search
increase.
!   It promises fairness as well as good scalability.
!   Under small congestion windows, binary search increase is

designed to provide TCP friendliness.
!   Default congestion-control in many Linux distribution

35 Connect | Communicate | Collaborate

	

Some congestion control examples
Cont.

! hstcp: An adaptive algorithm that:
!   Increases its additive increase parameter and
!   decreases its decrease parameter in relation to the current

congestion window size.
! vegas: It measure bandwidth based on RTT and adjust congestion

window on bandwidth
! westwood: optimized for lossy networks. The focus in on wireless

networks (where packet loss does not necessarily mean congestion).
! htcp: Hamilton TCP: Optimized congestion control algorithm for high

speed networks with high latency (LFN: Long Fat Networks).
!   Hamilton TCP increases the rate of additive increase as the time

since the previous loss increases.
!   This avoids the problem of making flows more aggressive if their

windows are already large (cubic).

36 Connect | Communicate | Collaborate

	

Congestion control:
Reno with two flows

37 Connect | Communicate | Collaborate

	

Congestion control:
BIC with two flows

38 Connect | Communicate | Collaborate

	

Congestion control:
Hamilton with two flows

39 Connect | Communicate | Collaborate

	

Checking and setting congestion control

! To get a list of congestion control algorithms that are available in your
kernel, run:
$ sysctl net.ipv4.tcp_available_congestion_control

net.ipv4.tcp_available_congestion_control = cubic
reno bic

! To know which is the congestion control in use
$ sysctl net.ipv4.tcp_congestion_control

reno

! To set the congestion control
 sysctl -w net.ipv4.tcp_congestion_control=cubic

40 Connect | Communicate | Collaborate

	

Final considerations

! Large MTUs:
!   Linux host is configured to use 9K MTUs
!   But the connection is using 1500 byte packets,
è  then it is actually needed 9/1.5 = 6 times more

buffer space in order to fill the pipe.
è  In fact some device drivers only allocate memory

in power of two sizes, so it could be even needed
16/1.5 = 11 times more

41 Connect | Communicate | Collaborate

	

Final considerations (cont.)

! Very large BDP paths:
!   For very large BDP links (>20 MB) there could be some Linux

SACK implementation problem.
!   Too many packets in flight when it gets a SACK event

è too long to locate the SACKed packet
è TCP timeout and CWND goes back to 1 packet.

!   Restricting the TCP buffer size to about 12 MB seems to avoid this
problem
–  but clearly limits the total throughput.

!   Another solution is to disable SACK

42 Connect | Communicate | Collaborate

	

GEANT Slides

43 Connect | Communicate | Collaborate

	

Europe’s 100Gbps Network
- e-Infrastructure for the “data deluge”

! Latest transmission and
switching technology

! Routers with 100Gbps
capability

! Optical transmission platform
designed to provide
500Gbps super-channels

! 12,000km of dark fibre
! Over 100,000km of leased

capacity (including
transatlantic connections)

! 28 main sites covering
European footprint

44 Connect | Communicate | Collaborate

	

GÉANT Global Connectivity
- at the heart of global research networking

GÉANT connects 65 countries outside of Europe,
reaching all continents through international partners

45 Connect | Communicate | Collaborate

	

Supporting the growth of R&E Communities
- transforming how researchers collaborate

! GÉANT delivers real value and benefit to society by enabling research
communities to transform the way they collaborate on ground breaking research

Together with
Europe’s NRENs,
GÉANT connects

50 million users in
10,000 institutions

across Europe

Health and Medicine | Energy | Environment | Particle Physics
Radio Astronomy | Arts & Education | Society

46 Connect | Communicate | Collaborate

	

Innovation through collaboration
- for delivery of advanced networking services

! Building the GÉANT “eco-system” through
development and delivery of a world-class networking
service portfolio:
!   Flexible connectivity options & test-bed facilities
!   Performance tools & expertise
!   Advanced AAI, cloud and mobility services

! Collaborative research into state-of-the-art technology
!   network architectures - mobility, cloud, sensor,

scientific content delivery, high-speed mobile
!   identity and trust technologies
!   paradigm shifts in service provisioning and

management
!   influencing global standards development

! Open Calls to widen the scope and agility for
innovation

Delivering innovative
services to end users,

their projects and
institutions

across Europe
and beyond:

secure access to the
network and resources

they need, when and
where they want it.

