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Introduction

Motivation for this Presentation
To show some success cases in GPU computing, including drawbacks
and benefits.
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Introduction

Motivation for this Presentation
To show some success cases in GPU computing, including drawbacks
and benefits.

Motivation for GPU Computing
To analyse or simulate the high volume of data in Cosmology in a
reasonable processing time.

Helsinki, 21th May 2014 3

EGI-InSPIRE RI-261323 www.egi.eu



2PACF

Cosmology-Astronomy Facing Data Challenge
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Introduction

Why GPU Computing?
• GPU has a good relation FLOPS per watt.

• It is not expensive, at least not more than the budget for
computing in cosmology.

• It can cover the computational need of a mid-sized group.

• Two entries (2nd Titan and 6th Piz Daint) in the top 10 of Top500,
and 10 entries in Green500.

• It is a hot topic (publications).
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Introduction

This is not:
• A presentation about the NVIDIA hardware (I am not NVIDIA

staff),

• nor a CUDA training,

• but our own experience when trying to solving scientific problems
with GPU-CUDA.
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First Project:
The Two-Point Angular
Correlation Function
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Large-scale structure of the Universe

Large-scale structure of the Universe:

• Non-linear structures for small scales (less than 10 Mpc).

• Cluster and super-cluster of galaxies are consequences of this
non-linearity.

• On large scales became nearly linear.
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2PACF

• The distribution of galaxies in the
universe is one of the most important
probes for cosmological models.

• The 2PACF is a test to measure this
distribution.

• The calculation of the 2PACF is
computationally demanding, O(N2).
CPU implementation takes around 8
hours for a sample of 430K galaxies.

Data Volume
Statistical Analysis from 106 to 1010 galaxies in the near future.
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2PACF

Our goals:

• Fast Implementation of Two-Point Angular
Correlation Function. CPU implementation
takes around 8 hours for a sample of 430K
galaxies, and O(N2)!

• An implementation able to deal with very
large surveys, > 106 galaxies.

• Low budget.
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2PACF

The 2PACF, ω(θ), is a measure of the excess or lack of probability of
finding a pair of galaxies under a certain angle with respect to a
random distribution. In general, estimators 2PACF are built by
combining the following quantities:

• DD(θ) is the number of pairs of
galaxies for a given angle θ chosen
from the data catalogue (D).

• RR(θ) equivalent on the random
catalogue (R).

• DR(θ) one galaxies from each
catalogue.
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2PACF

ω(θ) = 1 + (Nrandom
Nreal

)2 · DD(θ)
RR(θ) − 2 · (Nrandom

Nreal
) · DR(θ)

RR(θ)

• If ω(θ) > 0 more frequently found at angular separation of θ than
expected for a randomly distributed.

• If ω(θ) < 0 lack of galaxies in this particular θ.

• ω(θ) = 0 means purely random distribution.

• The sample 430K galaxies.
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GPU Implementation

• Intense use of shared memory for intermediate calculations and
histogram construction.

• Sub-histograms allocated on shared memory.

• Atomic operations on shared memory also required.

• Coalesced-access to global memory. Data ordered by
coordinates, not by galaxies.
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Execution Time

Table: Execution time and speedup for several implementations.

Implementation Execution time (s) Speedup
CPU 35,186.327

OpenMP (8 cores+hyperthreading) 3,326.363 10
GPU (GTX295) 305.570 115

MPI 64 cores 403.937 87
MPI 128 cores 205.008 171

Cárdenas-Montes, Miguel, et al.: New Computational Developments in

Cosmology , Ibergrid, 101-112, 2012

Ponce, Rafael, et al.: Application of GPUs for the Calculation of Two Point

Correlation Functions in Cosmology , Astronomical Data Analysis Software and

Systems XXI, 461, 73-76, 2012
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Drawbacks

• No expert in programming.

• No didactic books. No training events.
Lack of information in web.

• No atomicAdd() for float, only integer.
This is essential for some other
analyses in Cosmology, specially in
correlation functions.

• Single precision.
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More Optimization - New Card

• New card, C2075. A bit extra budget!
• AtomicAdd() in float.
• Double precision.

• New books (very didactic).
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More Optimization - New Card

• Initial implementation:
• Coalesced-access to data in global memory.
• Intense use of shared memory for intermediate calculations and

histogram construction.
• Atomic operations on shared memory also required: main

bottleneck.

• Improvements:
• Register for data frequently reused, incrementing the data locality.
• Incrementation of the occupancy by reducing the number of

variable and, therefore, forcing to recalculate.
• When possible reducing branching by replacing if-conditionals by

min-functions.
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GPU Implementation

Implementation
Single Precision,

Compute
Capability 1.2,

GTX295

Original Code 299,566.4±15.3 ms
Positive

Strategies 275,303.8±17.6 ms
Reduction 24,262.6

Speedup 1.09
Single Precision,

Compute
Capability 2.0,

C2075

Original Code 314,346.8±199.6 ms
Positive

Strategies 269,969.5±69.8 ms
Reduction 44,377.3

Speedup 1.16
Double Precision,

Compute
Capability 2.0,

C2075

Original Code 452,097.3±287.2 ms
Positive

Strategies 438,934.0±132.2 ms
Reduction 13,163.4

Speedup 1.03
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Outcome

• Satisfactory level of performance to deal with larger files > 106

galaxies even more.

• Code adopted in international collaborations: Physics of the
Accelerating Universe and Dark Energy Survey.

• Other problem proposed.

Cárdenas-Montes, Miguel, et al.: Calculation of Two-Point Angular Correlation

Function: Implementations on Many-Core and Multicore Processors , Ibergrid,

Editorial Universitat Politecnica de Valencia, 203-214, 2013
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A Bit of Hardware

Helsinki, 21th May 2014 24

EGI-InSPIRE RI-261323 www.egi.eu



TESLA C2075 Fermi 2.0

• 14 streaming multiprocessors (SM);
32 cuda cores / SM = total of 448 cuda cores;
32 threads / core = total of 14336 threads

• clock rate: 1.15GHz

• 6 GB memory (global memory)

• 64KB on-chip memory / SM and 768KB L2 cache
(shared by all SMs)

XEON E7-8870

• 10 cores / 20 threads

• 2.40GHz

• 30MB cache

i7-3970X

• 6 cores / 12 threads

• 3.50GHz

• 15MB cache
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Shear-Shear Correlation Function
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Shear-Shear Correlation

The physics of the problem:

• Light rays are deflected when travelling through a gravitational
potential, this phenomenon is known as gravitational lensing.

• This causes the observed shapes of distant galaxies to be very
slightly distorted by the intervening matter in the Universe, as their
light travels towards us. This distortion is called cosmic shear.

• By measuring this component it is possible to derive the
properties of the mass distribution causing the distortion.
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Shear-Shear Correlation

• In the past this analysis has been burden by instrumental errors,
reduced volume of data and the available observational data span
small regions of the sky.

• Data volume from tens of thousands to tens of millions.

• In this work an observational data set of 1 million of galaxies
(Canada–France–Hawaii Lensing Survey, CFHTLenS).

• Shear-shear has a higher computational intensity than 2PACF
(more calculation for each pair of galaxies).
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Shear-Shear Correlation
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Shear-Shear Correlation

cosΦ1 =
sin(α2 − α1) cos δ2

sin θ

sinΦ1 =
cos δ2 sin δ1 − sin δ2 cos δ1 cos(α2 − α1)

sin θ

ξ+(θ) =

∑

ij wiwj(γt(θi) · γt(θj) + γ×(θi) · γ×(θj))
∑

ij wiwj

ξ−(θ) =

∑

ij wiwj(γt(θi) · γt(θj)− γ×(θi) · γ×(θj))
∑

ij wiwj

ξ×(θ) =

∑

ij wiwj(γt(θi) · γ×(θj))
∑

ij wiwj
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New Weapons
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Base Implementation

The best practices are inherited:

• A coalesced pattern access to global memory.

• An intensive use of shared memory to store the results of
intermediate operations is implemented.

• The use of registers to store the input data frequently accessed
(such as galaxy coordinates and ellipticities).

• Sub-histogram construction on shared memory and final gathering
on global memory.
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Base Implementation

And other best practices are learned now:

• Use of double precision. Very tiny quantities are added in the
histograms (in the 2PACF an unit added); and the galaxies are
analysed at very small angles.

• AtomicAdd() in float required.

• Explicitly caching global memory into shared memory, L1 cache
memory off.
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Compute capability

• Compute capability 1.1: Atomic function only in global memory.

• Compute capability 1.2: Atomic function in shared memory.

• Compute capability 1.3: Some functions from single to double
precision (IEEE 754-1985).
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KD-tree
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Shear-Shear Correlation

Comparison with the previous state-of-the-art code, ATHENA.

• ATHENA is a sequential code
based on kd-trees to reduce the
computational complexity of the
calculations.

• Based on the parameter termed
Opening Angle, OA. The smaller
OA it is, the fewer approximations
makes.
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Outcome
Execution time: GPU 3,618.7s vs. ATHENA 247,681s at OA=0.
Cárdenas-Montes, Miguel, et al.: GPU-Based Shear-Shear Correlation Calculation ,

Computer Physics Communications, 185(1):11-18, ISSN: 0010-4655, 2014
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Shear-Shear Correlation

Extra optimization applied:

Implementation
Execution
Time (s)

Speedup
Related to the

Baseline
Speedup Related to

ATHENA OA=0

Baseline 3,618.7 67
Reordered

loops 3,243.3 1.12 75

Vectorized 3,184.2 1.14 77
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MPI-CUDA Implementation

MPI-CUDA Implementation to deal with tens of million of galaxies (1M
in this table):

Nodes Execution Time
Speedup Related to

MPI-CUDA Single-Node

Speedup
Related to

ATHENA OA=0
1 3,325.39 73.4
2 1,672.59 1.99 145.9
4 845.15 3.93 288.7
8 432.24 7.69 564.6

16 225.49 14.75 1082.2
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MPI-CUDA Implementation

Outcome
• 15M galaxies in the GPU implementation, the execution time

takes 169 hours,

• MPI-CUDA implementation with 16 nodes it takes 11 hours,
achieving a speedup of 15.36.

Cárdenas-Montes, Miguel, et al.: High-Performance Implementations for

Shear-Shear Correlation Calculation . Cluster, IEEE Computer Society, 2014.

Submitted
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Object Kinetic Monte Carlo

On behalf of:
Christophe Ortiz and Fernando Jiménez
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Object Kinetic Monte Carlo

• The kinetic Monte Carlo is a computer
simulation method intended to simulate
the evolution of a set of objects, given the
type of event those objects can perform
and the probability for each event to
occur.

• Probabilities of events must be given.
kMC cannot predict them.

• Case of radiation in solids:
• Objects: interstitials, vacancies, He, H, clusters...
• Events: Diffusion jumps, agglomeration, dissociation from clusters,

recombination...
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Object Kinetic Monte Carlo

Drawback of Sequential Approach
• Only one particle moves during one step.

• If number of defects increases CPU time increases accordingly.
Problem if you want to simulate high irradiation dose. Limited to
only ∼ 105 particles.

• Very CPU demanding: days - weeks/months.

• In practice limited to low doses and small volumes ∼100 nm x 100
nm x 100 nm.

• Too small compared to a grain in a polycrystal ∼50 µm.

• OkMC not suited to explore realistic piece of materials.
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Object Kinetic Monte Carlo

Our Expectations of GPU approach
• Implement a parallel version of the residence-time algorithm.

• Move thousands of particles during one step.

• Handle millions of particles to simulate high irradiation dose.

• Significantly decrease runtime.

• Investigate evolution of defects in realistic piece of materials.

Helsinki, 21th May 2014 46

EGI-InSPIRE RI-261323 www.egi.eu



Object Kinetic Monte Carlo

Benefits

• Our GPU-OkMC is able to simulate evolution of ∼ 107 particles, in
contrast to ∼ 105 with classical OkMC.

• Only few hours necessary to simulate evolution of millions of
particle in realistic conditions, in contrast to days with classical
OkMC.
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Object Kinetic Monte Carlo

Benefits

• Allows to simulate evolution of defects in a realistic piece of
materials (∼20 µm), in contrast to classical OkMC that only allow
small simulation boxes ∼60 nm.
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Pressure Poisson Solver

On behalf of:
Pedro Valero, Alfredo Pinelli and Manuel Prieto
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Pressure Poisson Solver

• Main bottleneck in most Navier-Stokes solver.

• Block Tridiagonal Problems for Elliptic problems: Steady,
Subsonic, Inviscid, Incompressible flows

Direct Solver
Open Source Fortran Fishpack Library
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Parallel Characteristics

• Core of the algorithm –>solving of
tridiagonal problems

• Dynamic parallelism:
Reduction –>decreases
Substitution –>increases

High
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Low
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n
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tit

ut
io

n
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Parallel Characteristics

• Regions with a high parallelism on GPU
(fine-grained)
1 block of threads per term to be solved
PCR for solving tridiagonal problems

• Regions with a low parallelism on
multicore (coarse-grained)
1 thread solves multiple independent
elements
Thomas algorithm for solving tridiagonal
problems

1
[t] [t] [t] [t]

i j nr

Cuda 
Block nr

Cuda 
Block j

Cuda 
Block 1

[t]
j

Cuda Cuda
Thread j Thread nr

Cuda
Thread 1

Cuda
Thread i

Cuda Block 1

1
[t] [t]

nr

Helsinki, 21th May 2014 52

EGI-InSPIRE RI-261323 www.egi.eu



Performance Evaluation
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Outcome
Valero-Lara, Pedro, et al.: Fast finite difference Poisson solvers on heterogeneous

architectures . Computer Physics Communications 185(4): 1265-1272 (2014)
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Speedup for 3D
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Solid-Fluid Iteration

On behalf of:
Pedro Valero, Alfredo Pinelli and Manuel Prieto
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Solid-Fluid Iteration

• High fall in performance dealing with solids within fluid
• The objective: achieving the same performance that pure fluid

solvers, minimizing/avoiding the overhead of the computing of the
solids contribution.

• Strategy: overlapping GPU computing (fluid) with multicore
computing (solids)
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Solid-Fluid Iteration
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Outcome
Valero-Lara, Pedro, et al.: Solid-Fluid Iteration through the use of the coupling

Lattice-Boltzmann and Immersed-Boundary . International Conference on

Computational Science (2014)
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DiVoS:
Dynamic Vortex for Superconductivity

Simulation of a superconductive surface

On behalf of:
Manuel Aurelio Rodrı́guez
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DiVoS

Very simple:

• Mangets located in the edges
of rectangles

• Charged particles freely
moving inside

• Try to find an equilibrium
situation: minimum

but

• Every particle must consider
all the rest plus the static
magnets: exponential growth

• Full of local minimums
(unwanted)
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DiVoS

Previous
• Grid exploration of a small solution space to model its behaviour

and serve as a reference.

Now
• (Now)Genetic algorithm to explore the solution space.

• Greedy algorithm to improve every solution (move towards
minimum).
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DiVoS

Implementation:

• PyCuda

Performance

• Over 99.5

• 300X speedup with a single
GPU : great success!

• Future –>GPU + MPI
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GPU Data Layout
of Parallel Evolutionary Algorithms
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GPU Data Layout for PEAs

• What data layout allows a faster evaluation of a non-separable
function?

• Non-separable functions are frequently used as benchmark
functions in PEAs.
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Non-Separable Fitness Functions

fRosenbrock =
D−1
∑

i=1

100 · [(x2
i − xi+1)

2 + (xi − 1)2] (1)

fRana =
∑D−1

i=1 (xi+1 + 1.0) · cos(t2) · sin(t1) + cos(t1) · sin(t2) · xi

where t1 =
√

|xi+1 + xi + 1.0| , and t2 =
√

|xi+1 − xi + 1.0| (2)
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Data Layouts

S1 Allocation of one individual per thread on registers.

S2 Allocation of one individual per thread on shared memory.

S3 Allocation of one individual per thread-block on share
memory with coalesced access to global memory and
atomic operations.

S4 Allocation of one individual per thread on registers with
coalesced access to global memory.

SE And sequential evaluation.

Helsinki, 21th May 2014 65

EGI-InSPIRE RI-261323 www.egi.eu



Results for Rana Function
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LinearSVM applied to Rana function results.
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GPU Data Layout for PEAs

Outcome
An assessment over the most suitable data layout in function of the
computational intensity of the function and the input size can be
presented. Not restricted to PEAs!

Cárdenas-Montes, Miguel, et al.: Effect of data layout in the evaluation time of

non-separable functions on GPU , Computing and Informatics, 1-21, ISSN:

1335-9150, 2015? Accepted
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GPU+Grid
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Grid Vintage Vision
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Open Questions

• How I can discover GPU
resources?

• How the information system
has be modified? And the
submission system?

• When a job is running in the
GPU, the other cores can
accept other jobs? Can pilot
jobs help?

• More open questions in the
audience...

And a lot of benefits!
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Learned Lessons

• The learning curve is not negligible.

• Training and advisory activities are essential for success.

• Difficult to port existing codes. Even more difficult to efficiently
port existing codes.

• High-intensity computational problems are necessary for
exploiting the GPU capabilities.
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Which is your Objective?

To get some acceleration: Almost sure due to hardware.
Objective when starting with GPUs. You walk along the
learning curve.
Only some parts of the code are accelerated.

To port a code: The most difficult option.

To write a new code: IMHO the highest probability of success.
The features of the card are fully exploited.
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To Swim in the Stream

• GPUs are incorporating stronger capacities. From Fermi (14 SM -
448 cores - 14336 threads, 0.52 Tflop/s double precision) to
Kepler (84 SM - 2668 cores - 85376 threads, 1.31 Tflop/s double
precision).

• CUDA includes more libraries: CUBLAS, CUFFT, CURAND,
CUSPARSE, NPP, THRUST; plus debugging tools, profilers, etc.

• CUDA codes are forward compatible without modification. I don’t
tell any about the performance!

• More knowledge, expertise and success cases among our
colleagues.
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Conclusions
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Conclusions

• GPU-CUDA a mature technology.

• Soundness of the science provided. More and more disciples on
it.

• Jump forward other capabilities: analyses and simulations.

• Waiting for the GPU in grid.
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Thanks

Acknowledgements
Antonio Delgado Peris, Christophe Ortiz, Fernando Jiménez, Juan José
Rodrı́guez Vázquez, Ignacio Sevilla, Rafael Ponce, Eusebio Sánchez, Pedro
Valero, Manuel Aurelio Rodrı́guez.

Thank you
Gracias

Questions?

More questions?
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