Simulation of Extensive Air Showers for Auger on GRID

G. Rubio Julio Lozano Bahilo

Pierre Auger Collaboration University of Granada

Simulation of Extensive Air Showers

<u>Shower</u>

Cosmic ray primary interacts creating mostly secondary pions :

Neutral pions : electromagnetic shower Charged pions : decay in muons

10¹⁹ eV proton

Simulation of a $10^{19}~{\rm eV}$ proton EAS using the MOCCA program. A sample of tracks at $>300~{\rm m}$ from the shower axis are shown. Frame box: $6\times6\times12~{\rm km}$ high. Color code: γ green, e red, μ blue. Drewn by Clem Pryle – University of Chicage

Simulation by Clem Prike

Simulation of EAS

Shower generation:

CORSIKA and AIRES are the software packages that generate those kind of events. In official simulations we have only used CORSIKA

^øA compilation tool lets the user decide on:

- ^ø Low energy interaction models
- ^a High energy interaction models (epos, QGSjetI/II, ...)
- ^ø and some other options

^oCORSIKA requires only an **input card** (run number, particle type, energy, zenith angle, seeds, etc ...) which is specific for each job.

^øBillions of particles being tracked:

- A full shower simulation can consume hundreds of hours of CPU time and several TBs of disk space.
- Statistical thinning method is needed, but still tens of hours of CPU and hundreds of MB of disk space are required for a single shower.

Pierre Auger Observatory

It is located near Malargüe, south of Mendoza in Argentina

- ^ø Red dots : water tanks (SD)
- Yellow labels : location of telescope eyes (FD) Green lines: coverage in azimuth

Detector sim. and rec.

Detector simulation and reconstruction:

^{\circ}Needs previously generated shower files \rightarrow showers have to be kept on Grid

^øAuger experimental devices detect :

<u>©Cherenkov light</u> of particles remaining at ground level as secondaries from the shower (SD)
<u>Pluorescence light</u> emitted while those secondaries are traveling through the atmosphere (FD)
Pluoth cases the output of the detectors are FADC traces (not much data)

OffLine: modular package to simulate the response of the SD and FD and to reconstruct physical parameters of the shower.

^øFile sizes are usually of the order of MBs

Grid Computing Model

Usage of resources 2012

Consumption of CPU time since the start of 2012

Usage of resources 2012

Disk space accumulated on Storage Elements

Usage of resources 2013

Consumption of CPU time since the start of 2013

