
 Building and Installing

A Brief Introduction to SAGA

All material from this tutorial can be found at:

http://saga.cct.lsu.edu/software/cpp/documentation/tutorials/loni-training-2010

And at:

https://svn.cct.lsu.edu/repos/saga-projects/tutorial/general_tutorial

General Information and Documentation

 General information

 http://saga. cct.lsu.edu/

 Documentation:

 http://saga.cct.lsu.edu/software/cpp/documentation

 API documentation

 Python

 http://static.saga.cct.lsu.edu/apidoc/python/latest/

 C++

 http://static.saga.cct.lsu.edu/apidoc/cpp/latest/

 Programmers Guide:

 https://svn.cct.lsu.edu/repos/saga/core/trunk/docs/manuals/prog
ramming_guide/tex/saga-programming-guide.pdf

November 29, 2010
3

TeraGrid SAGA Tutorial

http://faust.cct.lsu.edu/trac/saga/wiki/
http://static.saga.cct.lsu.edu/apidoc/python/latest/
http://static.saga.cct.lsu.edu/apidoc/python/latest/
http://static.saga.cct.lsu.edu/apidoc/cpp/latest/
http://static.saga.cct.lsu.edu/apidoc/cpp/latest/
http://static.saga.cct.lsu.edu/docs/programming_guide/html/saga-programming-guide.html

Distributed Applications

Development Challenges
 Developing Distributed Applications is fundamentally hard:

 Intrinsic:

 Control/Coordination & execution over Heterogeneous sites

 Complex Design point/Models of Distributed Applications,

 Reasons for using distributed CI -- more than (peak) performance
result

 Extrinsic:

 (Complex) Underlying infrastructure & its provisioning

 Large number Programming systems, tools and environments

 Lack of well-defined interfaces & abstractions

 Interoperability and extensibility become difficult

 Number of “effective” distributed applications that utilize resources
sequentially, concurrently or asynchronously is low

 Distributed CI: Is the whole > than the sum of the parts?

 See: DPA Survey Paper:

 http://www.cct.lsu.edu/~sjha/dpa_publications/dpa_surveypaper.pdf

SAGA: In a nutshell

 There exists a lack of Programmatic approaches that:

• Provide general-purpose, basic &common grid functionality for
applications and thus hide underlying complexity, varying semantics..

• The building blocks upon which to construct “consistent” higher-levels of
functionality and abstractions

• Meets the need for a Broad Spectrum of Application:

• Simple scripts, Gateways, Smart Applications and Production Grade
Tooling, Workflow…

 Simple, integrated, stable, uniform and high-level interface

• Simple and Stable: 80:20 restricted scope and Standard

• Integrated: Similar semantics & style across

• Uniform: Same interface for different distributed systems

 SAGA: Provides Application* developers with units required to
compose high-level functionality across (distinct) distributed systems

 (*) One Person’s Application is another Person’s Tool

SAGA: In a thousand words

SAGA: Architecture

How is SAGA Used?

 SAGA is used to develop applications that are distributed by
definition:

 Simple extensions of “localized applications” (eg scripting)

 MW applications, workers submitted to >8 back-ends

 Novel Distributed Programming Models (eg Rep-Exch)

 SAGA: Build tools and implement abstractions that enable
the execution of applications over distributed resources,
without modifying the applications

 Eg. Infrastructure Independent Pilot-Jobs

 SAGA: To provide uniform access layers to heterogeneous
CI

 Uniform access to EGI (ARC, gLite, Globus and Unicore/BES)

 Simplify the building of tools and Gateways

1. Develop applications that are distributed

by definition

SAGA: Develop applications that are

distributed by definition

 How to develop a simple MR that is
interoperable across infrastructure

concurrently?

 Same application, same

programming model:

• Very different performance
dependence

 Same application, different
programming models

• Very different performance

dependence

Understanding Distributed Programming Models

2. Tools for Effective Distributed Execution

Distributed Adaptive Replica Exchange (DARE)
Multiple Pilot-Jobs on the “Distributed” TeraGrid

 Ability to dynamically add HPC resources. On TG:

 Innovations in Distributed Algorithms:

 Variants of RE: Sync (local) vs async (distr.)

0

200

400

600

800

1000

1200

1400

4BJs, 4Machines

- 16 replicas/64

exchanges

2BJs 2Machines,

8 replicas, 32

exchanges

Synchronous

Asynchronous-

Centralized

Asynchronous-

Decentralized

3. Provides uniform access layers to
heterogeneous CI

SAGA-GANGA Integration

JSAGA 16

C Python Jython

? JPySAGA

Python Bindings for SAGA

Java SAGA JSAGA

Java GAT

Java Bindings for SAGA

Java-based Python SAGA wrapper

SAGA-C++

C++ Bindings for SAGA

JySAGA

a user application

legacy python bind.

Boost wrapper

SAGA-C++Py

a user application

DARE – Gateway for RNA-folding
(Joohyun Kim, CyD)

• DARE-Gateway:

• Integrated, Extensible
• Balanced: Scale-Up

and Scale-out to
•DARE-RFOLD, DOCK,
Bioscope (NG Sequence

Data), STMD (Molecular
Dynamics)

