
Vac and Vcycle
Luis Villazon Esteban

On behalf of 
Andrew McNab

University of Manchester
LHCb and GridPP



2

Overview

● Vac and Vcycle

● Vacuum model

● Machine/job features

● Accounting

● Usage

● Future plans



3

Vac and Vcycle

● Both VM Lifecycle Managers

● Vac is a standalone daemon you run on each worker node machine to
create its VMs

● Vcycle manages VMs on IaaS Clouds like OpenStack

– Can be run at the site, by the experiment, or by regional groups like GridPP

● Both developed at Manchester as part of GridPP Clouds/VMs efort

– With help from Lancaster, Oxford, IC, CERN, LHCb and ATLAS

● Both make very similar assumptions about how the VMs behave 

– The same LHCb and ATLAS VMs working in production on Vac and Vcycle



4

“Pilot VM” lifecycle
● Vac and Vcycle assume the VMs have a defned lifecycle

● Need a boot image and user_data fle with contextualisation

– Experiment provides procedure to make a site-wide user_data fle

● Virtual disks and boot media defned and VM started

● machinefeatures and jobfeatures directories may be used by the VM to get
wall time limits, number of CPUs etc

● The VM runs and its state is monitored

● VM executes shutdown -h when fnished or if no more work available

– Maybe also update a heartbeat fle and so stalled or overruning VMs are killed

● Log fles to /etc/machineoutputs which are saved

– shutdown_message fle can be used to say why the VM shut down



5

Vac's Vacuum Model

Matcher &
Task Queue

R
equests

for real jobs

Central
agents &
services

Pilot VM. Runs
Job Agent to
fetch from TQ

User and 
production

jobs

Vacuum
site

Instead of being created by the experiments,
the virtual machines appear spontaneously
“out of the vacuum” at sites. 

Since we have the
pilot framework, we

can do something
much simpler.

Strip the system
right down and have

each physical host
at the site

create the 
VMs itself.

Infrastructure-as-a-Client (IaaC)

Ideally use same VMs as
with IaaS clouds



6

Vacuum model
● For the experiments, VMs appear by “spontaneous production in the vacuum”

– Like virtual particles in the physical vacuum: they appear, potentially interact, and then
disappear

● Following the CHEP 2013 paper: 

– “The Vacuum model can be defned as a scenario in which virtual machines are created
and contextualized for experiments by the resource provider. The contextualization
procedures are supplied in advance by the experiments and launch clients within the
virtual machines to obtain work from the experiments' central queue of tasks.”

● At many sites, 90% of the work is done by 2 or 3 experiments

– So a simple, reliable way of running their “baseload” of jobs is worthwhile

● cvmfs and pilots mean a small user_data fle is all the site needs

– Experiments can provide a script to create the site's user_data 



7

Vcycle

Matcher &
Task Queue

Vcycle
VM factory

R
equests

for real jobs

Central
agents &
services

User and 
production

jobs

Cloud Site
Vcycle is one

implementation of an
external VM factory
that manages VMs

Can be run centrally
by experiment
or by site itself

or by a third party

Pilot VM. Runs
Job Agent to
fetch from TQ

Vcycle
VM factory

Third party
Vcycle

VM factory



8

Vcycle implementation
● Applies Vac ideas to OpenStack etc IaaS resources

● Experiment-neutral, and can be run by experiment or site or 3rd party

● Vcycle daemon creates VMs using user_data fle

● Watches what they do

● Backs of if they are failing to stay running

– No work? Fatal errors?

– Can also use shutdown messages to make better decisions

● Provides machine/job features via HTTP

– Also used to collect log fles, shutdown messages, and heartbeat updates

● Currently uses OpenStack native nova API

– OCCI fork has been done by WLCG team at CERN (Luis Villazon Esteban)

– Reintegration and EC2 support in progress



9

Machine/job features
● Proposed HEPiX protocol and current WLCG task force

● Allows site/host to communicate details of machine and the job slot to the job or
VM

– HS06, shutdown time for VM/host, CPU and memory limits, ... 

● One key fle per key/value pair, in one of two directories

● The Vac factory node ofers these directories to its VMs via NFS over its internal
private network

– Also a writeable NFS directory for log fles, shutdown reason, heartbeat fles etc 

● Vcycle does this use HTTP(S) web server on the Vcycle machine

● The basis for several scenarios for telling VMs and payload jobs what resources
they have and how long they can run for

– Want graceful termination of VMs to avoid disrupting payload jobs 

– /etc/machinefeatures/shutdowntime always set using max_wallclock_seconds



10

Vac and Vcycle at sites
● Manchester

– Vac running ATLAS and LHCb VMs

– Vcycle instance managing Imperial (LHCb/ATLAS) and CERN (ATLAS) VMs

● Lancaster

– Vac running ATLAS and LHCb VMs

– Vac being added to old farm now

● Oxford

– Vac running ATLAS and LHCb VMs

● Imperial

– GridPP OpenStack tenancy “gridpp-vcycle” has LHCb and ATLAS VMs

● CERN

– LHCb tenancy managed by Vcycle on LHCb vobox at CERN

– (A few) ATLAS VMs managed by Vcycle at Manchester



11

ATLAS Panda jobs running on Vac VMs 



12

Ganglia monitoring of ATLAS Vac sites 



13

LHCb CPU time from Vac and Vcycle VMs



14

Vcycle work at CERN
● Using Vcycle to run VMs in tenancies available through EGI

– See the presentation on the WLCG use case.

● Thinking of the problem in terms of wanting to provide a “steady pressure” of job
slots as long as there are payloads waiting to be run

● Vcycle is one way of doing this, as it monitors whether VMs fnd payloads to run or
not

● Have produced a version of Vcycle that uses OCCI API rather than OpenStack's
Nova API

● Using this for ATLAS, LHCb and looking at CMS. Would be interested in
collaboration with ALICE too.

● Of interest as EGI aims to take operational responsibility for the cloud
infrastructure and to take care of APEL accounting etc.



15

Summary
● Vac provides a simple way for sites to run VMs

● Vcycle provides a simple way to manage VMs on OpenStack

● Both demonstrated with ATLAS and LHCb production jobs

– Measured VM efciency for MC is very good now

● GridPP is in a very good position in this feld

● They are able to run production work in VMs if/when the experiments or
projects start pushing in that direction

● See http://www.gridpp.ac.uk/vac/ for RPMs, Yum repo, links to GitHub,
docs, man pages etc


	Página 1
	Página 2
	Página 3
	Página 4
	Página 5
	Página 6
	Página 7
	Página 8
	Página 9
	Página 10
	Página 11
	Página 12
	Página 13
	Página 14
	Página 15

