

EGI-InSPIRE

Brokering in EGI FedCloud: A Primer

Iván Díaz

CESGA

Outline

Introduction

Types of Integration Strategies

Existing EGI Fedcloud Brokers

Introduction

- The EGI Fedcloud offers users access to geographically distributed cloud computing resources.
- These resources can be configured and self-managed by the user in increasingly complex ways.
- They can also be deployed in complex and flexible ways both in distribution and scaling in response to puntual or unforeseen needs.
- All this complexity demands more of the users than competing solutions, and the role of Brokering is to make their task easier

Introduction II

- The EGI Fedcloud is a laaS cloud solution. This means the cloud lets users to create machines supported by an infrastructure, as opposed to exposing a computing platform or a service.
- Since this is a infrastructure level, users have to know how to setup an server, instead of just sending a job and waiting for the result.
- Setting up a server means selecting a OS, installing it, configuring the network correctly, installing the required applications and services, configuring them and enabling remote access for the final users.
- This means extra work, but allows users to fully customize their computing platform and software.

Overview

- In this presentation we will see the role of brokering inside the EGI Fedcloud.
- Compared to less sophisticated integration strategies.
- And also several infrastructure and brokering solutions that are supported now.

Outline

Introduction

Types of Integration Strategies

Existing EGI Fedcloud Brokers

Manual Server Setup

- The simplest Integration strategy.
- The user instantiates a canned pre-installed OS image from AppDB
- Generates a set of SSH keys and uploads them to the image.
- Starts the server, logs-in and does all the setup operations needed.

Manual Server Setup II

Advantages

- Good for testing
- Also simple or one-time jobs.

- Each individual server needs manual intervention.
- Non replicable or scalable.
- Time consuming and difficult to debug.
- · Very vulnerable to failures.

Contextualization

- There are a lot of setup operations that must be done on each VM
- The most important of these is the credential setup.
- Also network configuration, installation, updates, patches, etc.
- This can be automated on a contextualization script, supported by OCCI and most VMMs.
- This is the first step in automation.

Basic OS with contextualization

- The simplest automated Integration strategy.
- The user instantiates a canned pre-installed OS image from AppDB
- The user associates or creates a contextualization script that
 - Generates a set of SSH keys and uploads them to the image.
 - Starts the server, logs-in and does all the setup operations needed.
- All the keys, packages and data needed by the script can be maintained on a external site.

Basic OS with contextualization (I

Advantages

- The configuration step is automated and much faster.
- Changes on the configuration or supporting cloud environment are much easier.
- Perfect for applications and jobs with minimal setup and data dependences.

- Some effort is needed developing or adapting the script.
- Time consuming and difficult to debug.
- If the script depends on third sites this adds an important failure point.

Fully Customized OS Image

- The user makes a disk image that is fully preconfigured.
- This image does not need to use a template or standard OS.
- Very complex configurations and static data can be added and made available instantly.

Fully Customized OS Image (II)

Advantages

- A way to "ascend" physical machines to the cloud.
- The setup of the image takes virtually no time, as is pre-done.
- Non-standard OS and applications can be added with ease.

- The upkeep and maintenance of the image can get prohibitive.
- Non updated legacy images can represent a security issue and force cloud providers to take it down.
- If the disk image is large, the transfer and instantiation times can be prohibitive, specially if frequently updated.
- Very vulnerable to misconfiguration and security problems.

Infrastructure Broker

- A broker that manages creating images and manages instantiation.
- Generally offers several interfaces, including web and graphical.
- Geared towards deploying thousands of geographically distributed images.
- Also can manage elasticity and peak processing.
- Generally uses image templates and its own implementation of contextualization.

Infrastructure Broker (II)

Advantages

- Allows very large deployments with minimal human intervention.
- Support inter-cloud deployments.
- Automatic elasticity and peak-processing.
- Guarantees better QoS for third-party final users.

- Not recommended for one-shots or a low number of instances.
- Has a steeper learning curve.
- Can have vendor lock-in.

Application Broker

- The broker is abstracted as an API in the application level.
- Instances or controller processes can spawn other instances on the fly.
- Geared towards applications that can scale up or down dramatically.
- Better elasticity and peak processing managing that infrastructure brokers, since the load balancing can access local monitoring.
- Generally uses image templates and its own implementation of contextualization.

Application Broker (II)

Advantages

- Allows very large deployments with minimal human intervention.
- Support inter-cloud deployments.
- Automatic elasticity and peak-processing.
- Offers very fine cloud cost / computation efficiency trade offs, applications can go from one side of the spectrum to the other.

- Not recommended for one-shots.
- Has a steeper learning curve.
- Can have vendor lock-in.

Outline

Introduction

Types of Integration Strategies

Existing EGI Fedcloud Brokers

Infrastructure Brokers

- VCycle A VM lifecycle management based on the vacuum model. Supports OCCI and EC2, and instantiates jobs from experiments autonomously.
- Catania Science Gateway Framework A solution to create VM Images, manage auth, and deploy on different cloud providers using OCCI.
- CompatibleOne All in one proprietary solution for brokering, accounting, user management, monitoring, etc..
- SlipStream A Open Source 1-click solution for VM creation, deployment and contextualization, with cluster deployment support.
- VMDirac An extension of the Dirac portal for cloud, it supports rOCCI, EC2 and accounting, monitoring, brokering and scheduling, with SSH contextualization.

Application Brokers

- COMPSs Programming libraries and a runtime system that offers automatic parallelization and orchestration of applications and services, elasticity and auto scaling.
- Catania Science Gateway Framework A solution to create VM Images, manage auth, and deploy on different cloud providers using OCCI.
- WSPGrade A job and workflow submission tool for cloud.
 Grid applications can be ported with ease.
- VMDirac An extension of the Dirac portal for cloud, it supports rOCCI, EC2 and accounting, monitoring, brokering and scheduling, with SSH contextualization.

Outline

Introduction

Types of Integration Strategies

Existing EGI Fedcloud Brokers

- Brokering helps bridge the jump from a few virtualised servers to a true distributed computing environment.
- There are a lot of trade offs and considerations even in the simplest integration strategies.
- Users need to consider if they need brokering and EGI Fedcloud needs to make it as transparent as possible.