
Availability and reliability monitoring
for e-Infrastructures

ARG

ARGO can monitor a wide range of platforms
and provide operational and business insight
for a wide range of built-in and user defined
key performance indicators.

Management teams can monitor the
availability and reliability of the services from
a high level view down to individual system
metrics and monitor the conformance of
multiple SLAs 2

Using ARGO operations teams can track
the performance and status of each
component in the infrastructure, receive
notifications and detailed status reports.

ARGO Framework. Scalable Monitoring

Track Key Performance Indicators

Notification and detailed status reports

Monitor SLAs

ARGO Overview

3

ARGO Components. Modular architecture

At its core, ARGO uses a flexible distributed
monitoring engine built around Nagios, a powerful
analytics engine and a high performance API
service. Embracing a modular, pluggable
architecture, ARGO can easily support a wide
range of architectures.

Connectors for POEM, GOCDB, BDII and gstat

Monitoring Engine

Availability and
Reliability Compute

Engine

ARGO

Platform

API Service

ARGO Overview

4

ΕGI Model
Monitoring engines deployed at
each NGI. Results are
aggregated to a central location

Example deployment models

5

VO Model
A monitoring engine and a/r
compute engine is deployed
centrally in a VO

Example deployment models

6

NGI Model
A monitoring engine and a/r
compute engine within an NGI and
monitors the local infrastructure

Example deployment models

7

ARGO Messaging. Horizontal scaling

ARGO Monitoring Engine can publish monitoring
results in real time to any message broker service,
which support the STOMP or AMQP protocol.

Monitoring result collectors can listen on the
message broker service, retrieve the results

Messaging
Service

Monitoring Engine instances

A/R Compute
Engine

ARGO Overview

Availability and Reliability for distributed services

• Metric profiles (which metrics are relevant for a
specific type of service)

• Multiple Topologies (groups of service endpoints
or groups of other groups)

• Multiple Availability Profiles (Logical grouping of
service end point status results across services
groups)

• Definition of downtimes (was a service endpoint
supposed to be unavailable or not?)

• Custom factors (Service Group A can have
different importance from SG B)

• White listing of monitoring sources
• Re-computations on demand

A/R Compute Engine

8

A/R Compute EngineA/R Compute EngineA/R Compute Engine

Web Service
+

 Distributed Data Store

Sync
Components

Hadoop Cluster

Stream
Consumers

Prefiltering

• Based completely on open source components

• https://github.com/argoeu/

• Can operate in cluster and standalone mode

• Performance scalability & Easiness in day to day operations and
debugging

• Can perform batch re-computations in parallel

• Supports request and approval of re-computation through the API &
web interface.

• Removed the limitation of a hard coded availability profile

• Supports configuration of custom availability profiles through the API
& web interface

Advantages over ACE

9

• Pluggable architecture:

• Created abstract interfaces for Topology, Downtimes, Metric profiles
and factors

• Sync components are external modules that implement this
interfaces and they are responsible for retrieving the required data
from the various sources

• Support historical data for topology, downtimes, metrics profiles and
factors

• Use data retrieved from the external sources at the time of the
execution of the monitoring probes and not at the time the A/R
computations are performed

• Reports are accessible through the web interface. No need to circulate
a PDF, although this is still an option

Advantages over ACE

10

• SAM Monitoring system is deployed in a distributed
manner (Over 50 instances registered in GOCDB)

• Distributed setup was supposed to enable NGIs
to add their own custom test and service types
and compute A/R

• …but ACE depended on Oracle and thus it was never
added to the SAM Nagios distribution

• The vast majority of the NGIs deploy the stock
version of SAM Nagios without any other tests
custom configuration

Experience with SAM NGI Nagios

11

• SAM NGI Nagios maintenance and support requires
significant effort

• SAM NGI Nagios upgrades take really long time (in the
range of months). Not possible to have more than 1 or 2
upgrades per year

• Even the addition of new tests or simple modifications
of existing tests require focused, lengthy campaigns.

• only a small subset of NGIs deployed failover SAM
Nagios instance and therefore failures on instances
cause recalculation requests

Experience with SAM NGI Nagios

12

• Three centralized SAM Nagios instances were deployed for the
needs of EGI operations

• midmon - monitoring middleware versions of various services
across the whole EGI infrastructure

• opsmon - monitoring central and NGI operational tools

• secmon - running various security tests across the whole EGI
infrastructure.

• Practice has shown that these instances are performing very well
and they resolve some of the drawbacks of distributed approach
listed above.

• WLCG experiments are also using central SAM Nagios instances
for monitoring all their sites

Experience with Mid/Sec/Ops Mon Nagios

13

• ARGO monitoring engine is refactored SAM Nagios

• contains Nagios monitoring framework and
components needed for communication via
messaging infrastructure.

• Heavyweight databases for service status
calculation and web interface were removed.

• Such simplified engine is capable of running
more tests and thus monitor larger infrastructure.

ARGO Monitoring Engine

14

Two possibilities for deployment in EGI-Engage:

1. Use the distributed monitoring model

• All NGIs will have to upgrade their monitoring instances
to the new ARGO Monitoring Engine

• A roll-out campaign will start in Q1 of of EGI-Engage

2. Move to a centralized monitoring model

ARGO Monitoring Engine

15

• The Central ARGO Monitoring Engine:

• will run in high availability mode centrally

• if more capacity is required, new Nagios instances can be deployed in no time

• Will allow us to focus our effort on the operation and maintenance of the Monitoring
Infrastructure

• instead of spending the effort on the coordination of the upgrades

• It will be much easier to debug, identify and fix problem when they occur.

• No new effort is going to be required, as we are going to use the existing effort
that we have for the coordination of the upgrades

• Will lighten the burden on the NGIs, which will be freed from having to operate the
NGI Nagios instances.

• The same code base that will run on ARGO Central, will be available to all NGIs,
VO to take an install locally

16

A Central ARGO Monitoring Service

17

Thank you

