

Koninklijk Nederlands Meteorologisch Instituut Ministerie van Infrastructuur en Milieu

The VERCE Platform

Virtual Earthquake and Seismology Research Community in Europe

International structure

- Global observations and monitoring systems
- Integrated **Distributed Data Archives**
- Data and metadata formats

Supporting Scientific challenges

Understanding **Earth's dynamics** and structures via **Earthquakes Simulations and Models Evaluation**

Impact on Society

- Natural hazard and risk mitigation
- Energy resources exploration and exploitation
- Underground wastes and carbon sequestration

Virtual Earthquake and Seismology Research Community in Europe

International structure

- Global observations and monitoring systems
- Integrated **Distributed Data Archives**
- Data and metadata formats

Supporting Scientific challenges

Understanding Earth's dynamics and structures via Earthquakes Simulations and Models Evaluation

Impact on Society

- Natural hazard and risk mitigation
- Energy resources exploration and exploitation
- Underground wastes and carbon sequestration

Virtual Earthquake and Seismology Research Community in Europe

International structure

- Global observations and monitoring systems
- Integrated Distributed Data Archives
- Data and metadata formats

Supporting Scientific challenges

Understanding Earth's dynamics and structures via Earthquakes Simulations and Models Evaluation

Impact on Society

- Natural hazard and risk mitigation
- Energy resources exploration and exploitation
- Underground wastes and carbon sequestration

Forward Modelling Use Case

- 1. Production of **synthetic seismograms** for various **Earth models and earthquakes** on a continental scale Requires the execution of **HPC simulation codes** called solvers (**Simulation**).
- 2. The synthetic data may be compared with real observations (Raw Data Acquisition, MISFIT)
- 3. Model updates and improvement (Inversion)

VERCE Simulation Portal

SEISMOLOGICAL INGREDIENTS

MESH

MATERIAL PROPERTIES (velocity model)

NUMERICAL CODE (SPECFEM3D)

EVENTS

STATIONS

HPC INGREDIENTS

HPC CONNECTION
HPC CENTER POLICIES
HPC CENTER

SEISMOLOGICAL OUTPUT

SYNTHETIC SEISMOGRAMS

VOLUMETRIC DATA

Shakemap

Movie

SYNT - OBS MISFIT

Earthquake Simulation and Misfit Calculation Data overview:

Synthetic Data: seismograms, plots, 3D Geometry, Videos, KMZ packages, meshes and models. (100 stations = 900 products and metadata) 6-10 GB for a SPECFEM3D simulation on 1000 cores

Raw Data: on demand access and staging of observational data from EIDA: Earthquake Metadata, Sensors Metadata, waveform on regional scale.

(At the moment all via the FDSN WEB API)

Software as a service via the VERCE Science Gateway

- Support for Workflow technologies
- Data Management and Provenance System
- Combine HPC/DI computing infrastructures
- Synergy with the European Infrastructures (PRACE, EGI, EPOS)
- Dedicated User Interfaces

Science Gateway
Models and custom
dataset upload.
Simulation and
MISFIT WF Setup

- 1 Raw data acquisition
- 3 MISFIT

Multi Layered Workflow specification

Comprehensive pre-post processing framework across DI-HPC models

Platform Control Workflow:

sync: metadata preparation and

staging

compute: actual computation

prov: reads metadata,
updates prov repository,
intermediate data stage-out based on
prov (runtime)

cleanup: full data stageout and

cleanups

Multi Layered Workflow specification

Comprehensive pre-post processing framework across DI-HPC models

Platform Control Workflow:

sync: metadata preparation and

staging

compute: actual computation

prov: reads metadata, updates prov repository, intermediate data stage-out based on prov (runtime)

cleanup: full data stageout and

cleanups

compute receives and runs scientific workflows

Science Case Workflow (According to community preferences)

Extraction of user defined metadata and fine-grained

Provenance

Integration in Community Science Gateways

Support from PRACE and EGI partners

- 1. Grid Middleware: Globus, UNICORE.
 - gLite not used in VERCE
- 2. Software modules available across resources.
 - homogeneous management of software modules, including naming convention is desirable
- 3. X.509 VOMS enabled certificates and web-based proxy generation tool!!
 - EC requested to Evaluate a simplified access to limited resource, without having to apply for a X.509
- 4. Special need for reserved resources could be pre-booked according to site policies and special situations (Training, Reviews).

What is guaranteed after the end of the project?

VERCE BYOB Scenarios (Brew your own Bottle)

- Federated AAAI System and user profiling that can be used across data and resource providers, data management systems, science gateways:
- BYOB: Account activation, validation and authentication mechanisms are required to authorise and trigger allocation of resources to users, across the providers of the consortium.
- Scalability evaluation based on available resources and outreach for the supported HPC software.
- BYOB: Exposing software as a service via a Science Gateway requires somehow to provide clear information on the scale and the possibilities offered by the platform to the users.

VERCE BYOB Scenarios (Brew your own Bottle)

- Some PRACE sites restrict incoming and outgoing traffic to GridFTP.
 This prevented us to perform call to external HTTP webservices (GET/POST).
- BYOB: Exchanging small amounts of data with WEB APIs requires staging phases through external systems talking GridFTP and hosting mediation services towards HTTP end-points (FDSN, PROV).
- Need of an **Homogeneous and Web Friendly** Data Management System (WebDav interfaces, Front-end GUI, **integrated DOI services**)
- BYOB: Rapid and interactive access to intermediate results and metadata (runtime provenance) required to implement a solutions based on external Data Management Systems, NoSQL tech and User Interfaces.

Browse provenance and workflows output

Access Data Products shipped from clusters to iRODS

(Integrated Rule-Oriented Data System)

VERCE BYOB Scenarios (Brew your own Bottle)

- Access to results Data should be sharable across users
- **BYOB:** We have secure folders assigned to each user in iRODS. Access can be done via **GridFTP** (X.509) and **Front-end GUI** (login/pwd). We have to implement a way to allow a **controlled and shareable** access to these resources.
- Work Practice: Promote and support co-development
- BYOB: Sharing responsibility on implementation progress across partners. Identification of Task Forces, progress meetings with chair turn-over (IT and Researchers), adoption of proper tools (eg. Trello).

