H2020 INFRASUPP-4 CSA Project

EDISON – Education for Data Intensive Science to Open New science frontiers

Yuri Demchenko
University of Amsterdam
Outline

• Consortium members
• EDISON Project Concept and Objectives
 – Challenges
• Project structure – WPs and Tasks
• EDISON Liaison Group and working with communities
 – EDISON workshops
• Next steps
• How to contact EDISON project team?
 – Project coordinator - Yuri Demchenko <y.demchenko@uva.nl>
 – EDISON project invites wide cooperation and contribution to Data Science profession definition
 – Join RDA Interest Group on Education and Training on Research Data Training (IG-ETRD) - https://www.rd-alliance.org/node/971
 • Join IG-ETRD mailing list <rda-edu-ig@rda-groups.org>
EDISON Consortium Members

Universities
1. University of Amsterdam (UvA) - Coordinator
2. University of Stavanger (UiS)
3. University of Southampton (UK)

Community related partners
4. European Grid Initiative (EGI)
5. FTK – Research Institute for Telecommunication and Cooperation (DE) and APARSEN (Alliance Permanent Access to Records of Science in European Network)

Industry partner
6. Industry: Engineering (Italy)

SME
7. InMark (Spain)
Project Objectives

Objective 1: Promote the creation of Data Scientists curricula by an increasing number of universities and professional training organisations.

Increasing the number of universities offering Data Science programs is essential in order to respond to the increased demand of the European research, industry and public sectors.

Objective 2: Provide conditions and environment for re-skilling and certifying Data Scientists expertise to graduates, practitioners and researchers throughout their careers.

To provide conditions for a sustainable increase in the number of Data Scientists in Europe, EDISON will also support the training by professional organisations of the self-made expert, in the light of reaching the target number of graduates that gradually will satisfy the level of research and industry demand in coming 5-8 years.

Objective 3: Develop a sustainable business model and a roadmap to achieve a high degree of competitiveness for European education and training on Data Science technologies, provide a basis for the formal recognition of the Data Scientist as a new profession, including supporting the future establishment of formal certification for practicing “self-made” Data Scientists.
Objectives 1: Promote the creation of Data Scientists curricula by an increasing number of universities and professional training organisations.

Increasing the number of universities offering Data Science programs is essential in order to respond to the increased demand of the European research, industry and public sectors.

- A general model/framework of the required competences and skills starting from needs of existing and emerging e-Infrastructures, different scientific domains and industry sectors (Competence Framework for Data Scientist - CF-DS) including Glossary and Taxonomy of competences and skills.
- The Body of Knowledge (BoK) for the Data Scientist Profession (DS-BoK) that will be used to map required competencies/skills and existing academic, research and technology disciplines
- A Model Curriculum for Data Science (MC-DS) that will provide a reference implementation of the proposed CF-DS and DS-BoK.
- A promotional and networking framework (called EDISON-Net) that establishes communication with top-level European institutions in European countries
Objective 2: Certification and re-skilling

Objective 2: Provide conditions and environment for re-skilling and certifying Data Scientists expertise to graduates, practitioners and researchers throughout their careers.

Provide conditions for a sustainable increase in the number of Data Scientists in Europe, in the light of reaching the target number of graduates that gradually will satisfy the level of research and industry demand in coming 5-8 years.

- Seamless access to Education and Training e-Infrastructures, to support specialist training on Data Intensive Science and technologies that will include access to data sets for educational purposes, data management and analytical tools and cloud based virtual labs and classrooms.

- The creation of an EDISON Marketplace of existing and developing education and training courses, education materials and other resources, by leveraging on the EGI Knowledge Commons and the Training Market initiative.

- A model and a framework for Data Science education programme accreditation and professional certification, also targeting practicing “self-made” Data Scientists that want to obtain a formal certification via an academic or professional training institution.

- A network of experts, champion universities and professional training organisations and other stakeholders that will ensure consistent definition of the CF-DS, the DS-BoK and the MC-DS by sharing their experiences.
Objective 3: Develop a sustainable business model and a roadmap to achieve a high degree of competitiveness for European education and training on Data Science technologies, provide a basis for the formal recognition of the Data Scientist as a new profession, including supporting the future establishment of formal certification for practicing “self-made” Data Scientists.

- An education model suitable for all major learning paths (piloting cases) and stakeholders for education and training in Data Science from the consumer, operator and professional community sides that will include multiple learning models (e.g. residential, lifelong learning, e-Learning) that will support Data Science education evolution and individual career path management as technologies evolve.

- A business model that incorporates the proposed education model into a sustainable cycle of the research data value chain including the major stakeholders and actors from research, industry and government; produce a roadmap for a sustainable education and training services as a part of overall data driven technologies development in Europe.

- Establish EDISON Liaison Group(s) (ELG) of independent experts that represent the major stakeholders in Data Science that will work as a consulting body for the project and will create a basis for future independent expert group for universities and for EC.
A **Data Scientist** is a practitioner who has sufficient knowledge in the overlapping regimes of expertise in business needs, domain knowledge, analytical skills, and programming and systems engineering expertise to manage the end-to-end scientific method process through each stage in the big data lifecycle.

Data Scientist skill definition

- **Domain Expertise**
- **Research**
- **Statistics**
- **Data Mining**
- **Data Science**
- **Analytic Systems**
- **Algorithms**
- **Engineering Skills**

Business Expertise
Universities both in Europe and in USA (worldwide) don’t offer sufficient possibilities for educating new type of specialists.
- There are few Data Science programs offered in Europe and US.
- Some of currently offered programs are done based on slight modification or simple re-branding former curricula on Business Analytics, Data Analytics or Machine Learning.
- Existing academic disciplines and education programs can create a strong basis for Data Science education and profiling

There is no common vision and model how to combine theoretical and practical components in university curricula and create a necessary education and training infrastructure for practical skills acquisition

There is no (limited) coordination between industry and academia to achieve sustainability of the new specialists education and training that could avoid current competition between industry and research for new skills and competencies

The new profession of the Data Scientist is not well defined and not recognised as a distinct profession what leads to not consistent education and training programs and not correct expectation from employers and job agencies
Basic methodology of EDISON, inputs and work packages
WPs Structure

WP1 Coordination and Management

WP2 Educational Focus and DDS-BoK
 T2.1 Education and training needs and competencies
 T2.2 Inventory Education and Training resources
 T2.3 Data Scientist: DS-BoK and CF-DS profiles

WP3 Development and Reference Implementation
 T3.1 Development of the EDISON MC-DS
 T3.2 Piloting Use Cases A and B: Data Science Education and Training
 T3.3 Use Case C: Course and Programme accreditation
 T3.4 EDISON Online Educational Environment

WP4 Sustainability and certification of the DSP
 T4.1 Strategic Market analysis for sustainability
 T4.2 Business models definition
 T4.3 Sustainability: Plan and implementation
 T4.4 Definition of a certification scheme

WP5 Dissemination and Engagement
 T5.1 Management of the DEP
 T5.2 Production and distribution of dissemination material
WPs interaction and main tasks

EDISON Project:

WP2 Educational Focus and DS-BoK
- Data Scientist Competences and Skills Framework (CF-DS)
- Body of Knowledge Data Science (BoK-DS)
- Education and Training Resources Inventory and Taxonomy (ETR-Tax)
- Education and Training Resources Directory (ETR-Dir)

WP3 Development and Reference Implementation Strategy
- Data Scientist Model Curricula (MC-DS) and Profiles
- Education & Training Model (Residential, On-Line, Life-Long Learning)
- Data Science Accreditation Framework
- Education & Training Marketplace
- Education & Training Environment and Infrastructure

WP4 Sustainability and Certification of the Data Scientist Profession
- Business Model
- Sustainability Model and Implementation Plan
- Data Scientist Certification Scheme Plan
- Education and Training Model Roadmap

WP5 Dissemination and Engagement
- EDISON Liaison Groups (Univ, Employers, Experts)
- Promotional and dissemination material
- Self-made Data Scientists
- Champion Organisations and Pioneer Universities
- Universities and Professional Training Organisations

Target community: Students, Researchers, Practitioners, ICT staff
The proposal involves partners that run individual educational and training programs development:
- Enthusiastic universities and community driven activities
- EGI training program/marketplace development
- RDA Interest Group on Edu & Training, IG on Big Data Infrastructure, WG on Big Data Analytics and others

Funding is requested for coordination of these activities and building sustainable Data Science education environment and infrastructure.
EDISON Dimensions: Stakeholders, Scientific Discovery Stages, Data Management Functions

- Partners with experience
- Data Science components
- Scientific domains

Stakeholders:
- Libraries
- Universities
- Sci/Prof Associations
- Research Infra (RI) Domains
- E-Infra Operators

Scientific Discovery Stages:
- Experiment Observation
- Data Collection
- Data Processing
- Data Visualisation
- Data Preservation

Roles and skills:
- e-Infrastr Mangnt
- Data/Infra Mangnt
- Data Analytics
- Sci Data Publication

Tasks/Roles/Skills
A **Data Scientist** is a practitioner who has sufficient knowledge in the overlapping regimes of expertise in business needs, domain knowledge, analytical skills, and programming and systems engineering expertise to manage the end-to-end scientific method process through each stage in the big data lifecycle.
Data Science Curriculum Definition

Education Infrastructure/Environment
• Skills and competencies
• Common Body of Knowledge (CBK)
• Stakeholders
• Training/education infrastructure
• Datasets
• Approaches: Bottom up vs Top down

Specialisations
• Data Analytics and Tools
• Scientific Experiment Automation and Scientific Data Infrastructure
• Profiling for scientific domains
• Data Archiving, preservations, Librarian

Example CBK Master Program
1. Big Data Definition and Big Data Architecture Framework, Data driven and data centric applications model, Stakeholders and Roles
2. Big Data use cases and application domains taxonomy and requirements, Big Data in industry and science
3. Data structures, SQL and NoSQL databases
4. Data Analytics Methods and Tools, Knowledge Presentation
5. Big Data Management and curation, Big Data Lifecycle, Data Preservation and Sharing, Enterprise Data Warehouses, Agile Data Driven Enterprise
6. Cloud based Big Data infrastructure and computing platforms, Data Analytics application and new Data Scientist skills required
8. Big Data Security and Privacy, Certification and Compliance
Education & Training Programs Development

Approaches

• Reuse experience from the existing related program
 – Cloud Computing Technologies and Tools
 – Theoretical Informatics, Data Analytics and Artificial Intelligence
 – Collect examples/projects and do taxonomy
 – Science/subject domain and “long-tale” science
 – Libraries and data archives

• General (inter)active education principles
 – Common Body of Knowledge
 – Bloom’s taxonomy
 – Pedagogy vs Andragogy
 – MOOC: possibilities and limitations
 – Discussion forum for online education, and Research and Reading assignments for on-campus education
How to contact EDISON project team?

- EDISON project invites wide cooperation and contribution to Data Science profession definition
- Project coordinator – University of Amsterdam
 - Yuri Demchenko <y.demchenko@uva.nl>
 - Join RDA Interest Group on Education and Training on Research Data Training (IG-ETRD) - https://www.rd-alliance.org/node/971
 - Join IG-ETRD mailing list <rda-edu-ig@rda-groups.org>
Additional Information

• McKinsey Institute on Big Data Jobs
• Strata Survey Skills and Data Scientist Self-ID
• Big Data technology domain definition
There will be a shortage of talent necessary for organizations to take advantage of Big Data.

- By 2018, the United States alone could face a shortage of 140,000 to 190,000 people with deep analytical skills as well as
- 1.5 million managers and analysts with the know-how to use the analysis of big data to make effective decisions

SOURCE: US Bureau of Labor Statistics; US Census; Dun & Bradstreet; company interviews; McKinsey analysis

McKinsey Institute on Big Data Jobs
Strata Survey Skills and Data Scientist Self-ID

Analysing the Analysers. O'Reilly Strata Survey – Harris, Murphy & Vaisman, 2013
- Based on how data scientists think about themselves and their work
- Identified four Data Scientist clusters

<table>
<thead>
<tr>
<th>Data Developer</th>
<th>Developer</th>
<th>Engineer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Researcher</td>
<td>Researcher</td>
<td>Scientist</td>
</tr>
<tr>
<td>Data Creative</td>
<td>Jack of All Trades</td>
<td>Artist</td>
</tr>
<tr>
<td>Data Businessperson</td>
<td>Leader</td>
<td>Businessperson</td>
</tr>
</tbody>
</table>
Skills and Self-ID Top Factors

- Business
- ML/BigData
- Math/OR
- Programming
- Statistics

ML – Machine Learning
OR – Operations Research
Visionaries and Drivers: Seminal works and High level reports

The Fourth Paradigm: Data-Intensive Scientific Discovery.

Riding the wave: How Europe can gain from the rising tide of scientific data.

AAA Study: Study on AAA Platforms For Scientific data/information Resources in Europe, TERENA, UvA, LIBER, UinvDeb.

NIST Big Data Working Group (NBD-WG)
https://www.rd-alliance.org/
The Fourth Paradigm of Scientific Research

1. Theory and logical reasoning
 - Based on observation and *imagination* of ancient philosophers

2. Observation or Experiment
 - E.g. Newton **observed** apples falling from the tree to design his theory of mechanics, **verified** with other observations, **validated** with experiments
 - Galileo Galilei made **experiments** with falling objects from the Pisa leaning tower

3. Simulation of theory or model
 - Digital simulation can prove theory or model

4. Data-driven Scientific Discovery (aka Data Intensive Science)
 - e-Science as computing and Information Technologies empowered science
 - More data beat hypnotized theory
 - But not to use “microscope blindly”