SKA Science Data Processor

Current status and preliminary design

Chris Broekema (Compute platform lead)

Architectural Principles

•Main principles:

- Ensure scalability
- Ensure affordability
- Ensure maintainability
- Support current state-of-the-art algorithms
- •Exploit data parallelism, not just in frequency but also other dimensions
- We have only two fundamental/bulk data structures
- Raster grids and key-value-value stream records [e.g. u,v,w, -> visibility]
- •Emphasis is on the framework to manage the throughput
 - Hardware platform will be replaced on a short duty cycle c.f. any HPC facility
 - Algorithms and workflow will evolve as we learn about telescopes

Approach: Co-design of software and physical layer architectures

SDP context diagram with external interfaces SDF SQUARE KILOMETRE ARRAY SCIENCE DATA PROCESSOR Telescope manager Signal and Data Transport World outside SKA **Central Signal** Signal and Data Signal and Data Science Data Processor Transport Transport Processor observatory power, cooling, floor space, etc Infrastructure

Overview of Science Data Processor

Overview of Science Data Processor

Data Driven Architecture

SCIENCE DATA PROCESSOR

FF1

Processing nodes

de-grid

Buffered UV data

• Provides dominant scaling

Ο

 Nothing more needed if each processing node can manage a frequency channel complete processing

Physical Layer

Top level SDP network

The Compute Island concept

SDP scaling using Compute Islands

Compute Node Candidate Architecture

SCIENCE DATA PROCESSOR

Pascal

3D Memory

- Heavily inspired by COBALT node
- Used for prelim costing & scaling
- Many alternatives possible
 - ARM
 - OpenPower + CAPI
 - FPGA
 - DSP
 - Custom hardware
 - combinations of above

Maxwell DX12

2016

2014

• etc...

Kepler

Required SDP capacity

Required SDP computational capacity depends on

- 1. Input bandwidth
- 2. Computational intensity of the data reduction
- 3. Computational efficiency in % of R_{peak}

Required SDP capacity

Figure 4: Performance of our new strategy for

SCIENCE DATA PROCESSOR

cuFFT: up to 700 GFLOPS

1D Complex, Batched FFTs Used in Audio Processing and as a Foundation for 2D and 3D FFTs

