
How	the	INDIGO-DataCloud
computing	platform	aims	

at	helping	scientific	
communities

RIA-653549
Giacinto DONVITO

INDIGO	Technical	Director	
INFN	Bari

giacinto.donvito@ba.infn.it

INDIGO-DataCloud

• An	H2020	project	approved	in	January	2015	in	the	EINFRA-1-2014	call
• 11.1M€,	30	months	 (from	April	2015	to	September	2017)

• Who:	26	European	partners	in	11	European	countries
• Coordination	by	the	Italian	National	Institute	for	Nuclear	Physics	(INFN)
• Including	developers	of	distributed	software,	industrial	partners,	research	
institutes,	universities,	e-infrastructures

• What:	develop	an	open	source	Cloud	platform for	computing	and	data	
(“DataCloud”)	tailored	to	science.

• For:	multi-disciplinary	scientific	communities
• E.g.	structural	biology,	 earth	science,	physics,	bioinformatics,	 cultural	
heritage,	astrophysics,	life	science,	climatology

• Where:	deployable	on	hybrid	(public	or	private)	Cloud	infrastructures
• INDIGO	=	INtegrating	Distributed	data	Infrastructures	for	Global	ExplOitation

• Why:	answer	to	the	technological	needs	of	scientists	seeking	to	easily	
exploit	distributed	Cloud/Grid	compute	and	data	resources. 2

From	the	Paper	“Advances	in	Cloud”

• EC	Expert	Group	Report	on	Cloud	Computing,	
http://cordis.europa.eu/fp7/ict/ssai/docs/future-cc-2may-finalreport-experts.pdf

To reach the full promises of CLOUD computing, major aspects have not yet been
developed and realised and in some cases not even researched. Prominent among these
are open interoperation across (proprietary) CLOUD solutions at IaaS, PaaS and SaaS
levels. A second issue is managing multitenancy at large scale and in heterogeneous
environments. A third is dynamic and seamless elasticity from in- house CLOUD to public
CLOUDs for unusual (scale, complexity) and/or infrequent requirements. A fourth is data
management in a CLOUD environment: bandwidth may not permit shipping data to the
CLOUD environment and there are many associated legal problems concerning security
and privacy. All these challenges are opportunities towards a more powerful CLOUD
ecosystem.
[…] A major opportunity for Europe involves finding a SaaS interoperable solution across
multiple CLOUD platforms. Another lies in migrating legacy applications without losing
the benefits of the CLOUD, i.e. exploiting the main characteristics, such as elasticity etc.

3

INDIGO	Addresses	Cloud	Gaps

• INDIGO	focuses	on	use	cases	presented	by	its	scientific	communities to	
address	the	gaps	identified	by	the	previously	mentioned	EC	Report,	with	
regard	to:
• Redundancy	/	reliability
• Scalability	(elasticity)
• Resource	utilization
• Multi-tenancy	issues
• Lock-in
• Moving	to	the	Cloud
• Data	challenges:	streaming,	multimedia,	big	data
• Performance

• Reusing	existing	open	source	components	wherever	possible	and	
contributing	to	upstream	projects (such	as	OpenStack,	OpenNebula,	
Galaxy,	etc.)	for	sustainability.

4Integrating	distributed	data	infrastructures	with	INDIGO-DataCloud

INDIGO	and	other	European	Projects
• The	INDIGO	services	are	being	developed	according	to	the	requirements	collected	
within	many	multidisciplinary	scientific	communities,	such	as	ELIXIR,	WeNMR,	
INSTRUCT,	EGI-FedCloud,	DARIAH,	INAF-LBT,	CMCC-ENES,	INAF-CTA,	LifeWatch-
Algae-Bloom,	EMSO-MOIST,	EuroBioImaging.	However,	they	are	implemented	so	
that	they	can	be	easily	reused	by	other	user	communities.
• INDIGO	has	strong	relationships	with	complementary	initiatives,	such	as	EGI-
Engage	on	the	operational	side	and	AARCwith	respect	to	AuthN/AuthZ policies.	
Users	of	EC-funded	initiatives	such	as	PRACE and	EUDAT are	also	expected	to	
benefit	from	the	deployment	of	INDIGO	components	in	such	infrastructures.
• Several	National/Regional	infrastructures	are	covered	by	the	26	INDIGO	partners,	
located	in	11	European	countries.
• INDIGO	is	mentioned	in	the	recent	Important	Project	of	Common	European	
Interest	(IPCEI) for	the	exploitation	of	HPC	and	HTC	resources	at	national,	regional	
and	European	levels.

5Integrating	distributed	data	infrastructures	with	INDIGO-DataCloud

Work	Packages

6Integrating	distributed	data	infrastructures	with	INDIGO-DataCloud

INDIGO-DataCloud
General	
Architecture

7

JSAGA/JSAGA	Adaptors
Future Gateway	Engine
Future Gateway	REST	API

Other
Science	
Gateways

Mobile	 Apps

Open	Mobile	
Toolkit

Ophidpia
plugin

LONI	plugin

Taverna,	
Kepler	plugin

Admin	
Portlets

User	
Portlets

Data	
Analitics

Workflow
Portlets

SG	Mon
GUI
Clients

FutureGateway	Portal WorkflowsMobile	clients
Support
services

WP6	Services

Kubernetes Cluster	

IAM	

Service

PaaS

Orchestrator

QoS/SLA

CloudProvider

Ranker

Monitoring

Infrastructure

Manager

TOSCA

TOSCA
WP5	

Services

Onedata Dynafed

FTS
Data	Services

REST/CDMI/Wedbav/posix/GridftpOIDC

A
c
c
o
u
n
t
in
g

Non-INDIGO	

IaaS

Native	IaaS API

Heat/IM

TOSCA

WP4	Services

Mesos

Cluster
Mesos

Cluster

Aut.	Scaling

Service

Storage	

Service

S3/CDMI/Posix/Webdav
GridFTP

Smart	

Scheduling

Spot	Istances

Native	

Docker

QoS Support

Identity	

Armonization

Local

Repository

Integrating	distributed	data	infrastructures	with	INDIGO-DataCloud

IaaS	Features	(1)

• Improved	scheduling	for	allocation	of	resources by	popular	open	source	Cloud	
platforms,	i.e.	OpenStack	and	OpenNebula.
• Enhancements	will	address	both	better	scheduling	algorithms	and	support	for	spot-instances.	The	latter	
are	in	particular	needed	to	support	allocation	mechanisms	 similar	to	those	available	on	public	clouds	such	
as	Amazon	and	Google.

• We	will	also	support	dynamic	partitioning	of	resources	among	“traditional	batch	systems”	and	Cloud	
infrastructures	(for	some	LRMS).

• Support	for	standards	in	IaaS	resource	orchestration	engines through	the	use	of	
the	TOSCA	standard.
• This	overcomes	the	portability	and	usability	problem	that	ways	of	orchestrating	resources	in	
Cloud	computing	frameworks	widely	differ	among	each	other.

• Improved	IaaS	orchestration	capabilities for	popular	open	source	Cloud	
platforms,	i.e.	OpenStack	and	OpenNebula.
• Enhancements	will	include	the	development	of	custom	TOSCA	templates	to	facilitate	
resource	orchestration	for	end	users,	increased	scalability	of	deployed	resources	and	
support	of	orchestration	capabilities	for	OpenNebula.

8Integrating	distributed	data	infrastructures	with	INDIGO-DataCloud

IaaS	Features	(2)

• Improved	QoS capabilities	of	storage	resources.
• Better	support	of	high-level	storage	requirements	such	as	flexible	allocation	of	disk	
or	tape	storage	space	and	support	for	data	life	cycle.	This	is	an	enhancement	also	
with	respect	to	what	is	currently	available	in	public	clouds,	such	as	Amazon	Glacier	
and	Google	Cloud	Storage.

• Improved	capabilities	for	networking	support.
• Enhancements	will	include	flexible	networking	support	in	OpenNebula and	handling	
of	network	configurations	through	developments	of	the	OCCI	standard	for	both	
OpenNebula and	OpenStack.	

• Improved	and	transparent	support	for	Docker	containers.
• Introduction	of	native	container	support	in	OpenNebula,	development	of	standard	
interfaces	using	the	OCCI	protocol	to	drive	container	support	in	both	OpenNebula
and	OpenStack.

9Integrating	distributed	data	infrastructures	with	INDIGO-DataCloud

PaaS	Features	(1)

• Improved	capabilities	in	the	geographical	exploitation	of	Cloud	resources.
• End	users	need	not	to	know	where	resources	are	located,	because	the	INDIGO	PaaS	layer	
is	hiding	the	complexity	of	both	scheduling	and	brokering.

• Standard	interface	to	access	PaaS	services.
• Currently,	each	PaaS	solution	available	on	the	market	is	using	a	different	set	of	APIs,	
languages,	etc.	INDIGO	will	use	the	TOSCA	standard	to	hide	these	differences.

• Support	for	data	requirements	in	Cloud	resource	allocations.
• Resources	can	be	allocated	where	data	is	stored.

• Integrated	use	of	resources	coming	from	both	public	and	private	Cloud	
infrastructures.
• The	INDIGO	resource	orchestrator	is	capable	of	addressing	both	types	of	Cloud	
infrastructures	through	TOSCA	templates	handled	at	either	the	PaaS	or	IaaS	level.

10Integrating	distributed	data	infrastructures	with	INDIGO-DataCloud

PaaS	Features	(2)

• Distributed	data	federations supporting	legacy	applications	as	well	as	high	
level	capabilities	for	distributed	QoS and	Data	Lifecycle	Management.
• This	includes	for	example	remote	Posix access	to	data.

• Integrated	IaaS	and	PaaS	support	in	resource	allocations.
• For	example,	storage	provided	at	the	IaaS	layer	is	automatically	made	available	to	higher-
level	allocation	resources	performed	at	the	PaaS	layer.	

• Transparent	client-side	import/export	of	distributed	Cloud	data.
• This	supports	dropbox-like	mechanisms	for	importing	and	exporting	data	from/to	the	
Cloud.	That	data	can	then	be	easily	ingested	by	Cloud	applications	through	the	INDIGO	
unified	data	tools.

• Support	for	distributed	data	caching	mechanisms	and	integration	with	
existing	storage	infrastructures.
• INDIGO	storage	solutions	are	capable	of	providing	efficient	access	to	data	and	of	
transparently	connecting	to	Posix filesystems	already	available	in	data	centers.

11Integrating	distributed	data	infrastructures	with	INDIGO-DataCloud

PaaS	Features	(3)

• Deployment,	monitoring	and	automatic	scalability	of	existing	applications.
• For	example,	existing	applications	such	as	web	front-ends	or	R-Studio	servers	can	be	
automatically	and	dynamically	deployed	in	highly-available	and	scalable	configurations.

• Integrated	support	for	high-performance	Big	Data	analytics.
• This	includes	custom	frameworks	such	as	Ophidia	(providing	a	high	performance	
workflow	execution	environment	for	Big	Data	Analytics	on	large	volumes	of	scientific	
data)	as	well	as	general	purpose	engines	for	large-scale	data	processing	such	as	Spark,	all	
integrated	to	make	use	of	the	INDIGO	PaaS	features.

• Support	for	dynamic	and	elastic	clusters	of	resources.
• Resources	and	applications	can	be	clustered	through	the	INDIGO	APIs.	This	includes	for	
example	batch	systems	on-demand	(such	as	HTCondor or	Torque)	and	extensible	
application	platforms	(such	as	Apache	Mesos)	capable	of	supporting	both	application	
execution	and	instantiation	of	long-running	services.

12Integrating	distributed	data	infrastructures	with	INDIGO-DataCloud

AAI	Features

• Provide	an	advanced	set	of	features	that	includes:	
• User	authentication	(supporting	SAML,	OIDC,	X.509)
• Identity	harmonization	(link	heterogeneous	AuthN mechanisms	to	a	
single	VO	identity)
• Management	of	VO	membership	(i.e.,	groups	and	other	attributes)
• Management	of	registration	and	enrolment	flows
• Provisioning	of	VO	structure	and	membership	information	to	services
• Management,	distribution	and	enforcement	of	authorization	policies

13Integrating	distributed	data	infrastructures	with	INDIGO-DataCloud

Storage	Quality	of	Service	and	the	Cloud

14

Amazon S3 Glacier

Google Standard Durable	Reduces
Availability Nearline

HPSS/GPFS Corresponds	to	the	HPSS	Classes	(customizable)

dCache Resilient TAPEdisk+tape

Integrating	distributed	data	infrastructures	with	INDIGO-DataCloud

Next	step	:	Data	Life	Cycle

15

• Data	Life	Cycle	is	just	the	time	dependent	change	of	
• Storage	Quality	of	Service	
• Ownership	and	Access	Control	(PI	Owned,	no	access,	Site	Owned,	Public	access)
• Payment	model:	Pay	as	you	go	;	Pay	in	advance	for	rest	of	lifetime.
• Maybe	other	things

6	m 1	years 10	years

Integrating	distributed	data	infrastructures	with	INDIGO-DataCloud

Data	Federation

Amazon	S3

DNS:	p-aws-useast

INFN	Italy

Docker
Oneclient

Docker

AWS	USA

Docker
Onezone

VM	onezone

Docker
Oneclient

Docker

NFS	Server

VM	oneprovider

VM	nfs

VM	oneclient

POSIX	
Volume

Docker
Oneclient

Docker
UPV	Spain

VM:	demo-onedata-upv-provider

Docker
Oneclient

Laptop	
OSX

SAMBA
Export

boot2docker

20Integrating	distributed	data	infrastructures	with	INDIGO-DataCloud

17

Frontend	Services/Toolkit

Integrating	distributed	data	infrastructures	with	INDIGO-DataCloud

Integration schemas

• We	provide	the	graphical	user	interfaces	in	the	form	of	the	scientific	gateways	
and	workflows	and	the	way	to	access	the	INDIGO	PaaS services	and	software	
stack,	and	allow	define	and	set	up	the	on-demand	infra	for	the	WP2	use	cases.	
• Setting	up	whole	use	case	infrastructure:	The	administrator	will	be	provided	with	the	ready	to	use	
receipts	that	he	will	be	able	to	customize.	The	final	users	will	be	provided	with	the	service	end-points	
and	will	not	be	aware	of	the	backend.	

• Use	the	INDIGO	features	from	their	own	Portals: User	communities,	 having	their	own	Scientific	
Gateway	setup,	can	exploit	the	FutureGateway REST	API	to	deal	with	INDIGO	whole	software	stack.	

• Use	of	the	INDIGO	tools	and	portals,	 including	 the	FutureGateway,	Scientific	Workflows	Systems,	Big	
Data	Analytics	Frameworks	(like	Ophidia),	Mobile	Applications.	In	this	scenario	the	final	users	as	well	as	
domain	administrators	will	use	the	GUI	tools.	The	administrator	will	use	it	as	described	in	first	case.	In	
addition	domain	specific	users	will	be	provided	with	specific	portlets/workflows/apps	 that	will	allow	
graphical	interaction	with	their	applications	run	via	INDIGO	software	stack.	

Integrating	distributed	data	infrastructures	with	INDIGO-DataCloud 18

From	CSGF	to	FutureGateway

GridEngine

JSAGA

Portlet Portlet …

Classic	CSGF (before	 INDIGO)

Liferay/Glassfish

JSAGA

Portlet Portlet …

FutureGateway Approach	 (INDIGO)

Liferay/Tomcat

Comunication Portlet-GridEngine-JSAGA
only	 possible	with	JAVA	libraries

API	Server

Comunication Portlet-API	Server	via	REST	
APIs,	this	allows	to	serve	external	
applications
The	API	Server	interacts	via	JAVA	 libraries	
to	JSAGA

REST	APIs

Web/Mobile
Apps

• The	same	REST	APIs	could	
be	used	by	Mobile	Apps

• Those	APIs	make	easier	
the	interaction	with	the	
PaaS layer	

• Those	REST	APIs	provide	
an	easy	exploitation	of	
INDIGO	Capabilities	to	
non-INDIGO	Applications

Integrating	distributed	data	infrastructures	with	INDIGO-DataCloud
19

Ophidia framework

• Ophidia is	a	big	data	analytics	framework	for	eScience
• Primarily	used	for	the	analysis	of	climate	data,	exploitable	in	multiple	domains
• “Datacube”	abstraction	and	OLAP-based	approach	for	big	data
• Support	for	array-based	data	analysis	and	scientific	data	formats
• Parallel	computing	techniques	and	smart	data	distribution	methods
• ~100	array-based	primitives	and	~50	datacubeoperators	

• i.e.:	data		sub-setting,	 data	aggregation,	array-based	transformations,	datacube roll-up/drill-
down,	data	cube	import,	etc.	

Integrating	distributed	data	infrastructures	with	INDIGO-DataCloud 20

INDIGO	module	for	Kepler

• The	Kepler	scientific	workflow	system	is	an	open	source	tool	that	enables	
creation,	execution	and	sharing	of	workflows	across	a	broad	range	of	
scientific	and	engineering	disciplines.
• First	version	of	the	INDIGO	module	delivered,	gradually	added new	
functionalities	available	for	the	users.	
• INDIGO	module	based on	the	FutureGateway API
• At	the	moment,	it	is	possible	to	build	workflows	that	define	task,	prepares	
inputs	and	triggers	execution.	While	a	task	is	executed	within	INDIGO's	
infrastructure,	it	is	possible	to	check	its	status.
• FutureGateway API	client:	 https://github.com/indigo-dc/indigoclient
• Kepler	based	actors:	 https://github.com/indigo-dc/indigokepler

Integrating	distributed	data	infrastructures	with	INDIGO-DataCloud 21

22

Use	cases	examples

Integrating	distributed	data	infrastructures	with	INDIGO-DataCloud

Service Deployment and	application execution

Integrating distributed data infrastructures with INDIGO-DataCloud 21

We	are	now	
working	on	
adding	a	
Calico	
network	
configuration

Application execution to	the PaaS Layer

• The	INDIGO	approach	to	the	application	distribution	and	
execution	is:	
• Based	on	Docker
• Exploits	Mesos+Chronos
• All	the	application	executions	are	described	exploiting	a	TOSCA	Templates	
via	simple	APIs	or	Portlets
• The	input/output	are	automatically	managed	by	the	PaaS layer	(via	
Onedata and	external	endpoints)
• Dependencies,	retry	on	failures	supported	by	means	of	Chronos
• Geographical	data-aware	scheduling	provide	by	INDIGO	PaaS orchestrator	

13Integrating	distributed	data	infrastructures	with	INDIGO-DataCloud

• chronos_job_1:
• type:	tosca.nodes.indigo.Container.Application.Docker.Chronos
• properties:
• schedule:	 'R0/2015-12-25T17:22:00Z/PT5M'
• description:	 'Execute	app'
• command:	 /bin/bash	run.sh
• uris:	[]
• retries:	3
• environment_variables:
• INPUT_ONEDATA_SPACE:	 {	get_input:	 InputOnedataSpace	}
• INPUT_PATH:	 {	get_input:	 InputPath	}
•
• artifacts:
• image:
• file:	 indigodatacloud/ambertools_app
• type:	tosca.artifacts.Deployment.Image.Container.Docker
• requirements:
• - host:	docker_runtime1

• chronos_job_upload:
• type:	tosca.nodes.indigo.Container.Application.Docker.Chronos
• properties:
• schedule:	 'R0/2015-12-25T17:22:00Z/PT5M'
• description:	 'Upload	output	data'
• command:	 /bin/bash	run.sh
• retries:	3

• environment_variables:
• PROVIDER_HOSTNAME:	 <ONEDATA_PROVIDER_IP>
• ONEDATA_TOKEN:	<ROBOT	Token>
• ONEDATA_SPACE:	<path>
• INPUT_FILENAME:	 <input	filename>
• OUTPUT_FILENAME:	 <input	filename	-->	coincindes	with	amber-job-01	

OUTPUT_FILENAME>
• OUTPUT_PROTOCOL:	http(s)|ftp(s)|S3|Swift|WebDav
• OUTPUT_URL:	 <output	URL>
• OUTPUT_CREDENTIALS:	 <e.g.	username:password>
• artifacts:
• image:
• file:	 indigodatacloud/jobuploader
• type:	tosca.artifacts.Deployment.Image.Container.Docker
• requirements:
• - host:	docker_runtime1
• - job_predecessor:	 chronos_job_1
•
• docker_runtime1:
• type:	tosca.nodes.indigo.Container.Runtime.Docker
• capabilities:
• host:
• properties:
• num_cpus:	 0.5
• mem_size:	 512	MB

• tosca_definitions_version:	tosca_simple_yaml_1_0
• imports:
• - indigo_custom_types:	https://raw.githubusercontent.com/indigo-dc/tosca-

types/master/custom_types.yaml
• description:	>
• TOSCA	examples	for	specifying	a	Chronos Job	that	runs	an	application	using	

Onedata storage.
• inputs:
• input_onedata_token:
• type:	string
• description:	User	token	required	to	mount	the	user's	INPUT	Onedata space
• required:	yes
• output_onedata_token:
• type:	string
• description:	User	token	required	to	mount	the	user's	OUTPUT	Onedata space.	

It	can	be	the	same	as	the	input	token
• required:	yes
• #	data_locality:
• #			type:	boolean
• #			description:	Flag	that	controls	the	INPUT	data	locality:	if	yes	the	orchestrator	

will	select	the	best	provider,	if	no	the	user	has	to	specify	the	provider	to	be	used
• #			required:	yes
• input_onedata_providers:
• type:	list
• description:	List	of	favoriteOnedata providers	to	be	used	to	mount	the	Input	

Onedata space.	If	not	provided,	data	locality	algo will	be	applied.
• entry_schema:
• type:	string
• default:	['']
• required:	no
• output_onedata_providers:
• type:	list
• description:	List	of	favoriteOnedata providers	to	be	used	to	mount	the	

Output	Onedata space.	If	not	provided,	the	same	provider(s)	used	to	mount	the	input	space	
will	be	used.

• entry_schema:
• type:	string
• default:	['']
• required:	no
• input_onedata_space:
• type:	string

• required:	yes
• output_path:
• type:	string
• description:	Path	to	the	output	data	inside	the	Output	Onedata space
• required:	yes
• output_filenames:
• type:	list
• description:	List	of	filenames	generated	by	the	application	run
• entry_schema:
• type:	string
• required:	yes
• cpus:
• type:	float
• description:	Amount	of	CPUs	for	this	job
• required:	yes
• mem:
• type:	float
• description:	Amount	of	Memory	(MB)	for	this	job
• required:	yes	
• topology_template:
• node_templates:
• chronos_job:
• type:	tosca.nodes.indigo.Container.Application.Docker.Chronos
• properties:
• schedule:	'R0/2015-12-25T17:22:00Z/PT5M'
• name:	'JOB_ID_TO_BE_SET_BY_THE_ORCHESTRATOR'
• description:	'Execute	app'
• command:	'/bin/bash	run.sh'
• uris:	[]
• retries:	3
• environment_variables:
• INPUT_ONEDATA_TOKEN:	 {	get_input:	input_onedata_token }
• OUTPUT_ONEDATA_TOKEN:	 {	get_input:	output_onedata_token }
• INPUT_ONEDATA_PROVIDERS:	 {	get_input:	input_onedata_providers }
• OUTPUT_ONEDATA_PROVIDERS:	 {	get_input:	output_onedata_providers }
• INPUT_ONEDATA_SPACE:	 {	get_input:	input_onedata_space }
•
• artifacts:
• image:
• file:	indigodatacloud/ambertools_app
• type:	tosca.artifacts.Deployment.Image.Container.Docker

UC:	A	web	portal	that exploits a	batch system
to	run	applications

• A	user	community	maintains	a	“vanilla”	version	of	portal	and	computing	
image	plus	some	specific	recipes	to	customize	software	tools	and	data
• Portal	and	computing	are	part	of	the	same	image	that	can	take	different	roles.
• Customization	may	include	creating	special	users,	copying	(and	registering	in	the	
portal)	reference	data,	installing	(and	again	registering)	processing	tools.
• Typically	web	portal	image	also	has	a	batch	queue	server	installed.

• All	the	running	instances	share	a	common	directory.
• Different	credentials:	end-user	and	application	deployment.

13Integrating	distributed	data	infrastructures	with	INDIGO-DataCloud

UC	Inspiration:	Galaxy	on	the	cloud

• Galaxy	can	be	installed	on	a	dedicated	machine	or	as	a	front/end	to	a	
batch	queue.
• Galaxy	exposes	a	web	interface	and	executes	all	the	interactions	
(including	data	uploading)	as	jobs	in	a	batch	queue.
• Requires	a	shared	directory	among	the	working	nodes	and	the	
front/end.
• It	supports	a	separate	storage	area	for	different	users,	managing	them	
through	the	portal.	

28Integrating	distributed	data	infrastructures	with	INDIGO-DataCloud

UC:	A	web	portal	that exploits a	batch
system to	run	applications

1) The	web	portal	is	instantiated,	installed	and	configured	automatically	exploiting	
Ansible recipes	and	TOSCA	Templates.

2) A	remote	posix share	is	automatically	mounted	on	the	web	portal	using	
Onedata

3) The	same	posix share	is	automatically	mounted	also	on	worker	nodes	using	
Onedata

4) End-users	can	see	and	access	the	same	files	via	simple	web	browsers	or	similar.	
5) A	batch	system	is	dynamically	and	automatically	configured	via	TOSCA	

Templates
6) The	portal	is	automatically	configured	in	order	to	execute	job	on	the	batch	

cluster	
7) The	batch	cluster	is	automatically	scaled	up	&	down	looking	at	the	job	load	on	

the	batch	system.
Integrating	distributed	data	infrastructures	with	INDIGO-DataCloud 29

UC:	Use	Case	Lifecycle

• Preliminary
• The	use	case	administrator	creates	the	“vanilla”	images	of	the	portal+computing
image.
• The	use	case	administrator,	with	the	support	of	INDIGO	experts,	writes	the	TOSCA	
specification	of	the	portal,	queue,	computing	configuration.

• Group-specific
• The	use	case	administrator,	with	the	support	of	INDIGO	experts,	writes	specific	
modules	for	portal-specific	configurations.
• The	use	case	administrator	deploys	the	virtual	appliance.

• Daily	work
• Users	Access	the	portal	as	if	it	was	locally	deployed	and	submit	Jobs	to	the	system	
as	they	would	have	been	provisioned	statically.

30Integrating	distributed	data	infrastructures	with	INDIGO-DataCloud

UC:	A	Graphic Overview

Integrating	distributed	data	infrastructures	with	INDIGO-DataCloud

Future Gateway	
API	Server

WP6

WP5

Front-End
Public IP

Provider

User
2)	Deploy TOSCA	with
Vanilla VM	/	Container

1)	Stage
Data

5)	Mount

6)Access	
Web	Portal

Galaxy

4)	Install /	
Configure

WNWNWN …

Virtual	Elastic Cluster

Orchestrator

IM

OpenNebula

WP4

Other PaaS	
Core Services

Cloud	
Site

OpenStack

Heat
Clues

IM

31

TOSCA	Documents and	
Dockerfiles per	Use	Case

INDIGO-DataCloud
Docker Hub Organization

Champion
+	JRA

1.a.1)	
build,
push

1.a.2)	
Dockerfile
(commit)

1.b)	
Automated
Build

Detailed	IaaS Status

CCR Workshop, 17/3/2016 Davide Salomoni 32

#	nova-docker

•Docker driver	for	OpenStack Compute	(nova).
• 3rd	party	component,	not	from	INDIGO,	we	have	sent	some	
patches	and bugfixes.
• Deployment	scenario:
• Install	a	package	in	the	desired	compute	nodes.
• Configure	nova	and	glance	to	be	aware	of	containers.

• It	will	be	packaged	for	Liberty.

34
Integrating	distributed	data	infrastructures	with	INDIGO-DataCloud

#	ONEDock

•Docker driver	for	OpenNebula.
• It	requires	a	working	OpenNebula 4	installation.
•Deployment	scenario:
• Install	and	configure	ONEDock in	the	frontend	node.
•Configure	the	compute	nodes	with	Docker and	ONE	
required	config.

34
Integrating	distributed	data	infrastructures	with	INDIGO-DataCloud

#	Repository	Synchronization

•Sync	between	Docker Hub	organization	and	local	
registry/catalog	via	webhooks.
•Modules	for	both	OpenNebula and	OpenStack.
•Standalone	component	with	REST	API.
•Deployment	scenario:
• Install	a	package	and	configure	the	webhooks.
•Give	access	to	the	sync	user	to	the	registry/catalog.

34
Integrating	distributed	data	infrastructures	with	INDIGO-DataCloud

#	opie

• Preemptible Instances	extension	for	OpenStack Compute	(nova)
•Needs	a	working	OpenStack Compute	(nova)	environment.
• API,	Scheduler	and	HostManager as	pluggable	external	
modules.
•Deployment	scenario:
• Installation	of	a	package	+	a	*manual*	modification	(i.e.	applyinga
patch)	on	the	compute	API.
• Configure	nova	(i.e.	nova.conf)	to	use	the	new	HostManager and	
• PreemtibleFilterScheduler.
• It	will	be	released	for	Liberty.

34
Integrating	distributed	data	infrastructures	with	INDIGO-DataCloud

#	Synergy

• Fair	share	scheduling	support	for	OpenStack.
•Needs	a	working	OpenStack Compute	(nova)	environment.
• External	and	standalone	component,	no	modifications	
needed.
•Deployment	scenario:
• Install	synergy	as	a	separate	service,	configure	it	to	interact with	
OpenStack.
• It	will	be	released	for	Liberty	(for	the	1st	release).

34
Integrating	distributed	data	infrastructures	with	INDIGO-DataCloud

#	uDocker

•Run	containers	in	batch	systems	in	userspace,	making	
possible	to download	and	run	containers	by	non-privileged	
users.
• It	does	not	require	Docker at	all.
•Deployment	scenario:
• No	deployment.	It	is	a	simple	python	tool.

• This	has	been	tested	to	run	some	containers	in	local	HPC	
system	(CSIC),	with	success,	so	it	may	be	useful	for	EGI	in	
the	Grid	context.

34
Integrating	distributed	data	infrastructures	with	INDIGO-DataCloud

#	AAI	for	OpenStack

• The	OpenID Connect	support	has	been	improved	in	the	
Keystone	authentication	client	libraries	(it	did	not	work	out	
of	the	box).
•Deployment	scenario:
• Keystone	server	configuration	needed.
• Nothing	required	at	the	CLI,	changes	contributed	upstream	
(although	not	released	yet).

34
Integrating	distributed	data	infrastructures	with	INDIGO-DataCloud

#	AAI	for	OpenNebula

•Based	on	the	Token	Translation	Service	(TTS).
•Deployment	scenario:
• No	installation	required	at	the	site	level,	only	
configuration (similar	to	PERUN).

34
Integrating	distributed	data	infrastructures	with	INDIGO-DataCloud

INDIGO	FAQ

• How	do	INDIGO	achieve	resource	redundancy	and	high	availability?
• This	is	achieved	at	multiple	levels:

• at	the	data	level,	redundancy	can	be	implemented	 exploiting	the	capability	of	INDIGO's	Onedata of	
replicating	data	across	different	data	centers.

• at	the	site	level,	 it	is	possible	to	ask	for	copies	of	data	to	be	for	example	on	both	disk	and	tape	using	the	
INDIGO	QoS storage	features.

• for	services,	the	INDIGO	architecture	uses	Mesos and	Marathon	to	provide	automatic	service	high-
availability	and	load	balancing.	This	automation	is	easily	obtainable	for	stateless	 services;	 for	stateful
services	this	is	application-dependent	 but	it	can	normally	be	integrated	into	Mesos through,	for	example,	
a	custom	framework	(examples	of	which	are	provided	by	INDIGO).

• How	do	INDIGO	achieve	resource	scalability?
• First	of	all,	we	can	distinguish	between	vertical	(scale	up)	and	horizontal	(scale	out)	scalability.	
INDIGO	provides	both:
• Mesos and	Marathon	handle	vertical	scalability	by	deploying	Docker containers	with	an	increasing	
amount	of	resources.

• The	INDIGO	PaaS Orchestrator	handles	horizontal	scalability	through	requests	made	at	the	IaaS level	to	
add	resources	when	needed. 34

Integrating	distributed	data	infrastructures	with	INDIGO-DataCloud

INDIGO	FAQ

• How	do	INDIGO	achieve	resource	scalability?
• The	INDIGO	software	does	this	in	a	smart	way,	i.e.	for	example	it	does	not	look	at	
CPU	load	only:
• In	the	case	of	a	dynamically	instantiated	LRMS,	it	checks	the	status	of	jobs	and	queues	and	
accordingly	adds	or	remove	computing	nodes.

• In	the	case	of	a	Mesos cluster,	in	case	there	are	applications	to	start	and	there	no	free	
resources,	INDIGO	starts	up	more	nodes.	This	happens	within	the	limits	of	the	submitted	TOSCA	
templates.	In	other	words,	any	given	user	stays	within	the	limits	of	the	TOSCA	template	he	has	
submitted;	this	is	true	also	for	what	regards	accounting	purposes.

• How	do	you	know	when	and	where	resources	are	available?
• We	are	extending	the	Information	System	available	in	the	European	Grid	
Infrastructure	(EGI)	to	inform	the	INDIGO	PaaS orchestrator	about	the	available	IaaS
infrastructures	and	about	the	services	they	provide.	It	is	therefore	possible	for	the	
INDIGO	orchestrator	to	optimally	choose	a	certain	IaaS infrastructure	given,	for	
example,	the	location	of	a	certain	dataset.

35
Integrating	distributed	data	infrastructures	with	INDIGO-DataCloud

Conclusions

• First	official	release	will	be:	1st August

• The	first	prototype	is	already	available:
• Not	all	the	services	and	features	are	available
• This	is	for	internal	evaluation,	but	already	some	services	
could	be	tested	

• A	lot	of	important	development	are	being	carried	on	
with	the	original	developers	community	so	that	the	
code	mantenance is	not	(only)	in	our	hands	

43 Integrating	distributed	data	infrastructures	with	INDIGO-DataCloud

Thank	you

https://www.indigo-datacloud.eu
Better	Software	for	Better	Science.

44Integrating	distributed	data	infrastructures	with	INDIGO-DataCloud

