Case Study and Web Portals of Disaster Mitigation Competence Centre (DMCC)

Eric Yen Academia Sinica Grid Computing Centre (ASGC)

Taiwan

EGI Conference 2016 April 6, 2016

DMCC Aims to Achieve Early Warning Systems

- For selected disasters: Earthquake, Tsunami, Extreme Weather, Flood, Dust Transportation and Urban Heat Island
- Deeper understanding of disasters is an important goal by the e-Science approach
- Generating Hazard Maps: Based on better scientific models (combining atmosphere and oceanic models) and faster simulation facilities
- Validated by historical events, and the observation data
- Implemented by web portals together with workflows of target cases, and local user communities
- Gap analysis of participating countries will be conducted: e-Infrastructure, user engagement, technology and user support, outreach, etc.
- Partnership: TW, PH, TH, MY, ID, KR, DE, UK (Nepal, VN)

Disaster Mitigation Case Study & Collaboration Model

Partner	Selected Case	Required Data Sets	Status	Check Point	Simulation Framework
PH, TW	Typhoon Haiyan	Doppler Radar, Tidal gauge, air pressure, wind speed, typhoon path; hourly resolution	Finish 1st numerical study by combining atmospheric and ocean model	Demo @ APAN41	gWRF, iCOMCOT
MY, TW	Flooding 2014-15		First simulation by AS (global data) was done.	Demo @ APAN42	gWRF, Scouring
TH, TW	Flooding 2011		Simulation by NECTEC and AS (global data) were done. Aim to improve the accuracy and EWS.		gWRF, Scouring
ID, TW	Tsunami cave —> Forest Fire	air pollutants such as, CO, NOx (NO, NO2), SO2, O3, PM10, PM2.5 etc. with high temporal resolution	Data Collection and User Engagement	Demo @ APAN42	gWRF
Nepal, TW	Flooding 2014	High altitude and geographical features need to consider	Waiting for more necessary observation data		gWRF, Scouring
TW, PH	Tsunami Impact Analysis in South China Sea	Bathymetry, fault geometry, historical events,	In progress. Depends on high resolution bathymetry data from partners		iCOMCOT

DE will provide advanced visualization support whenever it is possible

Workflow of Case Study

- Reconstruct the whole process of target events
 - Find better model of the case
 - collect observation data
 - validation and evaluation
- Integration with Advanced Visualization (LRZ)
- Towards early warning for future hazardous events
- Engage local user communities
- Answering 'what-if' questions
 - E.g., if typhoon Morakot happened again by end 2100, the total rainfall will be 1m more (from 3m to 4m) in 72 hours

Regional Infrastructure

- Regional Cloud Federation based on Grid-based distributed infrastructure: EUAsia VO
 - Web portal will make use of available resources from TW (256+ CPU cores) for the moment. MY is working soon. PH and ID will join later.
 - Workflow of selected case studies are implemented by the Web portal
 - Generic Web portal will be open for EGI
 - iCOMCOT is ready
 - gWRF is validated by user communities
 - Supporting all cases by the same infrastructure
- Application Portals
 - Tsunami wave propagation simulation portal (iCOMCOT):
 - https://icomcot.twgrid.org
 - WRF portal: both Web portal and CLI will be provided
 - https://gwrf.twgrid.org
- Next Generation Cloud and EGI Integration
 - Integration with EGI: Ongoing
 - EGI Federated Cloud testbed and integration: Ongoing

A New Storm Surge Model for Typhoon Haiyan by Coupling Atmospheric and Ocenic Models Weather Data Atmospheric Model Model improvement NWP by WRF by validation with observation data Wind Field 3KM & Pressure resolution **Oceanic & Global** Data Alignment **Tide Model** Wind Field 2KM - 0.2KM & Pressure resolution Model improvement **Tidal Data** COMCOT by validation with Bathymetry & Topography observation data Tidal Record Storm Surge **Applications** Velocity 1. Understanding science behind the event Max Storm Inundation 2. Improve the coupled model Surge Height 3. Early warning

4. Providing hazard maps and risk potential analysis

Goals for a Storm Surge Model

- Spherical coordinate system with a large computational domain was adopted to cover the complete life cycle of the typhoon
- Nonlinear, bottom shear stress and shoaling effects should be all considered in nearshore and multi-scale wave propagation
- Calculating inundation area with high-resolution topographic data
- Coupled with both atmospheric model (e.g. WRF and TWRF) and parametric typhoon model (e.g. Holland Model)
- Coupled with global tide model (e.g. TPXO and Nao99b)
- High-speed efficiency for the warning system

WRF model Configures

WRF Modeling System Flow Chart

- dx,dy=3km
- number of horizontal grids=951x401
- number of vertical levels=45
- time_step=10sec
- Microphysics=WSM 5-class scheme
- longwave radiation= rrtm scheme
- shortwave radiation=Goddard shortwave scheme
- surface layer option=Revised MM5 Monin-Obukhov scheme
- land-surface option=unified Noah land-surface model
- boundary layer option=YSU scheme
- cumulus parameterization option=New GFS SAS from YSU
- grid analysis nudging on
- IC ,BC: NCEP reanalysis data set

Storm Surge Modeling on 2013 Typhoon Haiyan by Coupling Ocean and Atmospheric WRF Model

Typhoon Morako in 2010 and 2100

Pseudo Global Warming Experiment for Historical Typhoons

- Typhoon Morakot (2009) in the end of 21st Century

- Consider circulation change of MRI-AGCM3.2S in 2075-2099 under A1B scenario and 2009 typhoon Morakot (top rainfall record : 3000 mm in 5 days)
- 48 ensemble runs.
- Precipitation increase rate over southern plain can reach 40% (from 3000 mm to 4200 mm)
 Source: Prof. Huang-Hsiang Hsu (RCEC, AS), EnvComp Workshop 2016

Preliminary Results of the Simulation on 2014 Extreme Rainfall event over the Peninsular Malaysia

Overview of the Simulation Setup

Model	WRF 3.6.1			
	Model	WRF 3.6.1		
	Vertical levels	σ -coordinate system with 37 σ –levels (up to 100 hPa)		
	Landuse Data	MODIS - 30 seconds (~900 m) of spatial resolution		
Vertical levels	Domain Resolution	D01-9 km (181 X 181 grid points)		
	Initial and boundary conditions	NCEP global analyses (0.5° X 0.5°) (~54 km) 6-hourly		
	SST update	ON		
	Feedback	dback OFF		
	Fdda	OFF		
Landuse Data	MODIS - 30 seconds (~900 m) spatial resolutio			
Domain Resolution	D01 – 9 km	n (181 X 181 grid points)		
Initial and boundary conditions	NCEP global analyses (0.5º X 0.5º) (~54 km) 6-hourly			
SST update	ON			
Feedback	OFF			
Fdda	OFF			

Simulation period > Dec 21-24 | 2014.12.23 - 00:00

NCEP Data

Simulation Results

Malaysia_2014 Streamlines (ms-1)

Cumulative Rainfall

Domain 02 - Simulation > Dec 21-24 | Cumulative Rainfall (Dec 21-24)

Flooding in Nepal

3-Hour Precipitation from PPS TRMM/GPM Estimate 2014-07-10_03Z

Advanced Visualization

٢z

- Local Scouring case study is the first example by collaboration between NCU, ASGC and LRZ
- 3D Typhoon Morakot Visualization is the next case study

Chosen Case Study: Dey and Barbhuiya, 2005

Advance Visualisatio

Compute domain: 1.1m by 0.3m by 0.14m

Abutment model: Circular

Column radius:).015m

Uniform sediments

Mud: 6cm thick Clean water: 6cm thick

Provided by: Chun-Wei Lin & Tso-Ren Wu (NCU)

LRZ: Siew Hoon Leong (12 May 2015)

Tellus SERIES B CHEMICAL AND PHYSICAL METEOROLOGY

Modelling of long-range transport of Southeast Asia biomass-burning aerosols to Taiwan and their radiative forcings over East Asia

By CHUAN-YAO LIN¹*, CHUN ZHAO², XIAOHONG LIU^{2,3}, N WEI-NEI CHEN¹, ¹Research Center for Environmental Changes, Acaden

Valid: 0000 UTC Sei 15 Mar 08 (0900

al pressure -

al pressure -

Dalaset: icst RIP: chun-f06-co

Pest: 96.00 h

CO concentration

Harisontal wind vectors

15 km resolution

NOAA-18 satellite picture on 29 August 2015 shows deterioration of smoke haze situation in Kalimantan

NOAA-18 satellite picture on 31 Augusts 2015 shows widespread smoke haze from Sumatra spreading into the Strait of Malacca.

NASA's Aqua satellite collected this natural-color image with the Moderate Resolution Imaging Spectroradiometer, MODIS, instrument on September 22, 2015.

Disaster Mitigation WG of APAN Approved in Jan. 2016

- Facilitate regional efforts on DM and Extending DM works to all APAN members (20 members from 17 countries)
- Take advantage of the new collaboration framework between APAN and EGI
- Cloud + (Security + AAI) + Networking + Applications
- Case Study: Starting from Agriculture and Disaster Mitigation WG
- Service Directory: Welcome all parties provide any service end point
- Data Directory:
 - weather, geospatial, observation, satellite images/data, earthquake, etc.
 - public open data sources
- Proof of Concept Experiment
- Review the Progress at least once every year at APAN meeting
- Next Workshop is in Aug. 4th, 2016 at APAN42 in Hong Kong

Asia-Pacific Advanced Network

Collaborations & Outreach Team up the user communities, service providers and technology providers

- EGI and EC Projects
- Asia Pacific Advanced Network: 2 meetings a year
- International Symposium on Grid and Cloud (ISGC)
 - http://event.twgrid.org/isgc2016/
- Environmental Computing Workshop
 - Collocated at ISGC 2016, <u>https://indico4.twgrid.org/indico/</u> event/1/session/2/?slotId=8#20160313
 - Next one will be at ISGC 2017

Running WRF

1. WPS - WRF Preprocessing System

- geogrid: Define size/location of model domains and interpolate static terrestrial fields to simulation grids
- ungrib: Extract meteorological fields from GRIB files
- metgrid: Horizontally interpolate meteorological fields (from ungrib) to simulation grids (defined by geogrid)

2. Running WRF ideal.exe - ideal case initialization program

iCOMCOT User Interface (I)

ICOMCOT

ICOMCOT

I ICOMCOT

iCOMCOT User Interface (II)

ICOMCOT

≡ iCOMCOT

Status

In this page, user can view the status of running simulation, retreive simulation result, and view the running history.

INITIAL SURFACE

initial surface

MAXIMUM WAVE HEIGHT

layer01

TIDE STATIONS

maximum wave height

01_BandaAceh

02_Phuket

03_Chennai 04_Male

05_Colombo

WAVE PROPAGATION

layer01 (400x300)

layer01 (640x480)

layer01 (800x600)

BATHYMETRY

layer01

DOWNLOAD

comcot.ctl

Raw Data

Google Earth KMZ

iCOMCOT Result Visualization

- Support effective disaster mitigation based on deep understandings
- Facilitate scientific advancement on disaster modeling and simulation
- Provide e-Services for Scientists, Governments and wider user communities

Cross-scale Climate Modeling System

Source: Prof. Huang-Hsiang Hsu (RCEC, AS), EnvComp Workshop 2016