Documentation of the Overall Process of Software Verification & Certification

	Date
	Version and Comments
	Authors

	22/01/2010
	Version 0.1

Compilation of first draft after the first meeting of the Ibergrid team responsible for M-E-1
	Isabel Campos, Jesus Marco

Jorge Gomes, Goncalo Borges and Javier Lopez,

	25/01/2010
	version0.2 specification of CHANGELOG
	Alvaro López

	25/01/2010
	Version 0.3
	Mário David

	28/01/2010
	Version 0.4
	Updated with comments from Mario David, Isabel Campos and Steven Newhouse; consolidated version

Providing Software releases for verification & certification

If we use the concepts introduced in ITIL for service transition and service improvement as guide for "good practices", we can identify four situations, with the corresponding analysis to be done for each of them.

The documentation to be made available by the software provider depends on the category on which the software provided falls.
1. Revision Software Release, which would equivalent to a "Continual Service Improvement". Bug fixing and security vulnerabilities. No new functionality.
I. Explanation about the patch or bug fixing for service improvement documentation.

2. Minor Software Release (also "Continual Service improvement")
I. New functionality but preserving backward compatibility of interfaces and functionality
3. Major Software Release, which is equivalent in the ITIL terminology to a "Service Transition". This refers to a large revision, with the possibility of breaking backward compatibility.

The information to provide by the software developers includes the following:
I. Why is this major upgrade necessary. There are two main scenarios which need to be analyzed

i. It has been explicitly requested by the EGI Middleware Coordination Board (MCB) as a response to users demands.

a. The architecture of the new service needs to be agreed between the EGI MCB and the Software provider

b. Once the architecture has been approved by the MCB, the development of the service progresses, a testing plan is designed in parallel by SA2.3 in collaboration with the developers.
ii. An external software provider without prior request offers it to EGI. In this case the software developers need to provide the documentation for the EGI bodies to analyze the usefulness and convenience of the proposed service.

II. Independently of the origin, all major software releases will require a risk analysis, including a specific security analysis
III. Dependencies on other software stacks, operating system, and hardware architecture need to be provided by the software developers

IV. Implications on other services need to be considered at the architectural design period, and a corresponding document provided to SA2.3 in order to prepare the skeleton for the testing plan

4. New Service, also equivalent to "Service Transition"
The software provider should produce the necessary documentation for the EGI boards to analyze the following aspects:
I. Documentation related to the service new functionalities and installation requirements.

II. Why is this new service necessary for the EGI Infrastructure

i. Operations oriented improvement: needs to be analyzed by the MCB and SA1

ii. User oriented improvement: needs to be analyzed by the MCB and the User Coordination Office
III. Risk analysis, including a specific security analysis
IV. Dependencies on other software stacks, operating system, and hardware architecture should be provided

V. Implications on the already existing services in the UMD
According to the EGI-InSPIRE proposal, Figure 11 on page 79:

"The certification of any given middleware component is preformed by the Product Team, the result should be a Test Report containing a “Pass” or “Fail” of each item defined by TSA2.2 Quality Control criteria for that component."
It is the role of TSA2.3 to validate such “certified” component after analysis of the Test Report, and provided documentation for that release.
(Should we rephrase this??)””The workflow between the verification & certification team and software provider is based on the analysis of the Test Reports. The testing of software components will be based on a dialog between the software provider and the SA2 team.””
I. Test suites "skeletons" for the different services involved in a software release will be provided by SA2. This skeleton will summarize which basic service features and security analysis needs to be taken care by the software provider.

II. The software provider will then provide a testing plan containing at least all the items included in SA2 for verification.

III. The SA2 verification team should approve explicitly the testing plan.
IV. When the software release arrives to the SA2 team, it should include the full testing report according to the approved plan.

V. Build on the work already done: https://twiki.cern.ch/twiki/bin/view/EGEE/SA3Testing
Documentation to be provided by the Software developer

· Revision Software releases

Bug fixing, security vulnerabilities or small improvements will provide the testing report, which will go immediately through the verification process in SA2, and should contain the following items:
1. The test report according to the test plan.
2. Packages in RPM format and meta-packages with dependencies.

3. A document CHANGELOG stating the differences from previous version, following the standards of GNU changelog definition
 .

4. The following lists of HOWTOs

· How to upgrade the services. (I would probably take out “install” from this item, since this should already be documented when the service first came to production).
I.
· Minor Software Releases
Refer to a new functionality preserving backward compatibility of interfaces, and thus interoperability with other services. The software provider should provide the following items to for verification to SA2:
1. The test report according to the testing plan.

2. Packages in RPM format and meta-packages with dependencies.

3. Revised documentation: Users Manual, Administration Manual and Developers Manuals, to take into account the new functionality.

4. A document CHANGELOG stating the differences from previous versions1.

5. The following lists of HOWTOs

I. How to upgrade the services

II. How to test and/or monitor critical service functionality
· Major Software Releases

Refer to new functionality possibly not preserving backward compatibility. The software provider should provide the following items to for verification to SA2:
1. The test report according to the test plan.
2. Packages in RPM format and meta-packages with dependencies.

3. Revised documentation: Users Manual, Administration Manual and Developers Manuals, to take into account the new functionality.
4. A document CHANGELOG stating the differences from previous versions.
5. The following lists of HOWTOs:
· How to install and/or upgrade the services.
I. (Should be the Users Manual)
· How to test and/or monitor critical service functionality.
II.
6. Information for DEBUGGING

I. Description of the service log locations and logging options.
II. List of information (variables, etc…) to capture in the event of problems. Ideally a Debug script.
· New services.

New services should respond to requirements from User Communities and/or from the operational necessities coming from the EGI stakeholders.

The implementation of a new service needs to go first through an analysis of the architecture and implications on other services, with the implication of the relevant EGI technical and/or user bodies; TSA2.3 needs to provide the input for a testing plan according to the architecture and functionalities of the new service. Upon the release, the process of verification & certification will make sure that the software provider has followed the agreed testing plan.

The interaction between the software provider and the EGI technical and user bodies should go through the following steps:

1. A dialog between the software provider and the User Communities and technological bodies in EGI is necessary in order to reach agreement about the required functionalities.

2. The architecture document needs to be explicitly approved by EGI.eu before the development starts.

3. In parallel to the development efforts, TSA2.3 should develop a test plan

a. Software developers should be in contact with TSA2.3 during the development process and report the incidences related to the architecture or the functionalities that might arise during the development phase.

b. Incidences in the software development should be handled according to a protocol.

i. Minor incidences: not affecting other services or interfaces or the basic functionalities agreed upon. TSA2.3 takes this feedback as an input for the testing plan

ii. Major incidences: If other services, interfaces or basic functionalities are affected, the information will be forwarded from TSA2.3 to the CTO in EGI where the architecture document will be revised.

This process should cover the whole pre-alpha status of the development period.

4. Once the pre-alpha period has passed, the testing required in the alpha and beta period of the software release needs to be done according to the testing plan discussed with TSA2.3. The testing plan needs to be explicitly approved by the EGI MCB.

5. The delivered software release should contain the following items

The documentation or manuals should consist of and/or contain:

· Installation RPMs and meta-packages with the dependencies
· Testing plan report

· Administration manual. Includes installation instructions, configuration, logs and it's location, network connectivity requirements to the internet and to the other site services (intranet), etc.

· Users manual.

· Developpers manual, possibly including the API's.
Software repositories and interaction between SA2 and Software providers

Software providers and verification team need to have strong communications channels in order to have the process working smoothly. We need to design an efficient method to interact with the software providers at the verification and bug reporting time.

1. Verification & Certification
The software provider will certainly have a system for tracking issues in the development process. The SA2 teams could use the tracker system setup by the software provider.
2. Bug reporting
EGI will setup an issue tracker system, which can be linked to the issue tracker of the particular software provider.

End-users and operators will report bugs through GGUS, which will be also operated by EGI, and linked with the EGI issue tracker, and reported upwards to the software provider own system

Issues and questions/comments

I see the UMD with several hierarchical levels of software stacks:
1. Middleware: gLite (EMI), Unicore, ARC.
2. Node types: glite-UI, glite-WN, etc. Node types are a consequence of our services not being able to be deployed on the same node as each other. Not a good sign in terms of integration. We should strive for a single distribution (removing the distinction of node types) and having sets of services that are installed to deliver particular capabilities.
3. Services: batch system, information system, authorization, etc.
A focus on where the software will be deployed might be useful.
1. Software that has to go onto every site should be VERY easy to deploy and should have the least impact on changing how the site operates or the pre-requisites they must meet (e.g. OS version), i.e. the common CE or SE deployments.

2. Software (community services) which will be deployed less-widely, and perhaps only by expert sites, we COULD put in less packaging effort – VOMS, WMS, FTS, LFC, etc.
3. Clients to access both site and community services. Again they should imply a very low impact installation requiring minimal privileges.

SA2 will work with UMD, and UMD will have components which are part of:

· EMI (which can have a more integrated environment, all use savannah, etics, the same build environment, etc.).
· Not part of EMI, which I will call external. Services like VDT and Condor, or even node types like Storm. And others may pop up from the NGIs for example. These have operation environments already setup, and it's unknown if they will ever want to migrate into an “EMI” environment. Some of these we will expect to be shipped as part of EMI as they will need to be closely integrated. Especially libraries from VDT that EMI software will build on top of.
�	 See for example: http://www.gnu.org/prep/standards/html_node/Change-Log-Concepts.html#Change-Log-Concepts

