
Extending the GOCDB’s role in the 
Information Service Space 

George Ryall (George.Ryall@stfc.ac.uk) 

David Meredith (David.meredith@stfc.ac.uk) 

10/05/17 – EGI Conference 2017 

GOCDB is an EGI service provided by STFC, co-funded by EGI.eu and EGI-Engage. 

mailto:George.Ryall@stfc.ac.uk
mailto:David.meredith@stfc.ac.uk
https://goc.egi.eu/
http://www.stfc.ac.uk/
http://www.egi.eu/
http://go.egi.eu/eng
http://go.egi.eu/eng
http://go.egi.eu/eng


Overview 

• New service endpoint attributes 

– What? 

– Why? 

• Write API 

– Why? 

– Authentication 

– Currently supported methods 

– Worked example 

• Future Development 

 



New Service Endpoint Attributes 
What? 

• New boolean ‘monitored’ flag, exposed through read API 

• New Email field for adding contact details for the SE 

 



New Service Endpoint Attributes 
Why? 

• Enabled ARGO to remove dependency on BDII 

• The SE email is NOT currently rendered in the output of the 
'get_service' method, as this method has a Level 1 protection level 
which is considered a public method containing no critical 
information and no personal email/details 
(https://wiki.egi.eu/wiki/GOCDB/PI/Technical_Documentation#Prote
ction_levels) If emails are needed, we can either:  

– Elevate the protection level of the get_service method to Level 2 (which 
means a certificate would be needed to query the method)  

– Relax EGI/GOCDB protection level rules so that Level 1 can include 
site/service emails but no personal emails, note however there would 
still be a risk that personal emails would still be added.  

 

https://wiki.egi.eu/wiki/GOCDB/PI/Technical_Documentation#Protection_levels
https://wiki.egi.eu/wiki/GOCDB/PI/Technical_Documentation#Protection_levels


Write API 
Why? 

• Assists WLCG to reduce dependence on BDII by 

• Enabling the ability to add/update/delete custom 
properties defined on Sites/Services/Endpoints using a 
REST API. 

• These custom properties are key-value pairs, allowing 
additional information to be added to entities without 
changes to the GOCDB schema. 

• Documentation: 
https://wiki.egi.eu/wiki/GOCDB/Write_API/Technical_Doc
umentation 

 

https://wiki.egi.eu/wiki/GOCDB/Write_API/Technical_Documentation
https://wiki.egi.eu/wiki/GOCDB/Write_API/Technical_Documentation


Write API 
Authorisation 

• Authentication is by X509 
certificate, a DN of a host 
allowed to make changes 
through the API can be 
associated with each site.  

• This is then allowed to 
update custom properties 
for that site, its services, and 
service endpoints. 

• This association is set 
through the web portal on 
the site details page. 

 



Method url function 

POST <apiurl>/v5/ServiceEndPoint/<End point ID>/ExtensionProperties Adds the extension properties defined in the request to the SE with the given ID (fails if there are already extension properties) 

PUT <apiurl>/v5/ServiceEndPoint/<End point ID>/ExtensionProperties replace the extension properties for the SE with the given ID (fails if there are already extension properties) with those in the 
request (?if non defined?) 

DELETE <apiurl>/v5/ServiceEndPoint/<End point ID>/ExtensionProperties Removes all the extension properties for the SE with the given ID (fails if there are already extension properties) (?if non defined?) 

POST <apiurl>/v5/ServiceEndPoint/<End point ID>/ExtensionProperties/<name> Adds an extension property of the named SE with the named name and value in the request (fails if property with that name is 
already defined) 

PUT <apiurl>/v5/ServiceEndPoint/<End point ID>/ExtensionProperties/<name> Updates the extension property of the named SE with the named name and value in the request (?If property is not already 
defined) 

DELETE <apiurl>/v5/ServiceEndPoint/<End point ID>/ExtensionProperties/<name> Removes the named extension property from the named SE 

POST <apiurl>/v5/Service/<Service ID>/ExtensionProperties Adds the extension properties defined in the request to the service with the given ID (fails if there are already extension properties) 

PUT <apiurl>/v5/Service/<Service ID>/ExtensionProperties Replace the extension properties for the service with the given ID (fails if there are already extension properties) with those in the 

request (?if non defined?) 

DELETE <apiurl>/v5/Service/<Service ID>/ExtensionProperties Removes all the extension properties for the service with the given ID (fails if there are already extension properties) (?if non 

defined?) 

POST <apiurl>/v5/Service/<Service ID>/ExtensionProperties/<name> Adds an extension property of the named service with the named name and value in the request (fails if property with that name is 
already defined) 

PUT <apiurl>/v5/Service/<Service ID>/ExtensionProperties/<name> Updates the extension property of the named service with the named name and value in the request (?If property is not already 
defined) 

DELETE <apiurl>/v5/Service/<Service ID>/ExtensionProperties/<name> Removes the named extension property from the named service 

POST <apiurl>/v5/Site/<Site ID>/ExtensionProperties Adds the extension properties defined in the request to the Site with the given ID (fails if there are already extension properties) 

PUT <apiurl>/v5/Site/<Site ID>/ExtensionProperties Replace the extension properties for the site with the given ID (fails if there are already extension properties) with those in the 
request (?if non defined?) 

DELETE <apiurl>/v5/Site/<Site ID>/ExtensionProperties Removes all the extension properties for the site with the given ID (fails if there are already extension properties) (?if non 
defined?) 

POST <apiurl>/v5/Site/<Site ID>/ExtensionProperties/<name> Adds an extension property of the named site with the named name and value in the request (fails if property with that name is 

already defined) 

PUT <apiurl>/v5/Site/<Site ID>/ExtensionProperties/<name> Updates the extension property of the named site with the named name and value in the request (?If property is not already 
defined) 

DELETE <apiurl>/v5/Site/<Site ID>/ExtensionProperties/<name> Removes the named extension property from the named site 

Write API -Supported Methods 



Write API 
Worked Example 1 

$ curl -i -k --cacert /cygdrive/c/George_local/GOCDB/certs/escience-root.pem --cert 
/cygdrive/c/George_local/personalCerts/2016.crt.pem --key /cygdrive/c/George_local/personalCerts/2016.key.pem -X POST 
https://goc.egi.eu/gocdbpi/V5/service/782/ExtensionProperties -d '{"TestProp":"someKey"}' 

HTTP/1.1 403 Forbidden 

Date: Thu, 08 Dec 2016 12:00:44 GMT 

Server: Apache/2.2.15 (Red Hat) 

X-Powered-By: PHP/5.3.3 

Content-Length: 248 

Connection: close 

Content-Type: application/json 

 

{"Error":{"Code":403,"Message":"The X509 identifier \"\/C=UK\/O=eScience\/OU=CLRC\/L=RAL\/CN=george ryall\" is not authorised 
to alter the RAL-LCG2 site","API-Documentation":"https:\/\/wiki.egi.eu\/wiki\/GOCDB\/Write_API\/Technical_Documentation"}} 

 

• I try and edit a service which I am not authorised to, so I get a 403 error code 
and a JSON formatted error message explaining the error 

 



Write API 
Worked Example 2 

$ curl -i -k --cacert /cygdrive/c/George_local/GOCDB/certs/escience-root.pem --cert 
/cygdrive/c/George_local/personalCerts/2016.crt.pem --key /cygdrive/c/George_local/personalCerts/2016.key.pem -X POST 
https://goc.egi.eu/gocdbpi/V5/service/4180/ExtensionProperties -d '{"TestProp":"someValue"}' 

HTTP/1.1 204 No Content 

Date: Thu, 08 Dec 2016 12:02:28 GMT 

Server: Apache/2.2.15 (Red Hat) 

X-Powered-By: PHP/5.3.3 

Content-Length: 0 

Connection: close 

Content-Type: 

• This time I am authorised to change this service. 

• I add an extension property with the key ‘TestProp” and value “someValue” 
to the service with ID 4180. 

• Currently the API returns no content, but it provides a 204 http response 
code on success. 

 



Write API 
Worked Example 3 

$ curl -i -k --cacert /cygdrive/c/George_local/GOCDB/certs/escience-root.pem --cert 
/cygdrive/c/George_local/personalCerts/2016.crt.pem --key /cygdrive/c/George_local/personalCerts/2016.key.pem -X POST 
https://goc.egi.eu/gocdbpi/V5/service/4180/ExtensionProperties -d 
'{"TestProp":"someDifferentValue","secondTestProp":"someOtherValue"}' 

HTTP/1.1 409 Conflict 

[…] 

Content-Type: application/json 

{"Error":{"Code":409,"Message":"A property with name \"TestProp\" already exists for this object, no properties were added.","API-
Documentation":"https:\/\/wiki.egi.eu\/wiki\/GOCDB\/Write_API\/Technical_Documentation"}} 

 

$ curl -i -k --cacert /cygdrive/c/George_local/GOCDB/certs/escience-root.pem --cert 
/cygdrive/c/George_local/personalCerts/2016.crt.pem --key /cygdrive/c/George_local/personalCerts/2016.key.pem -X  
PUT https://goc.egi.eu/gocdbpi/V5/service/4180/ExtensionProperties -d '{"TestProp":" someDifferentValue 
","secondTestProp":"someOtherValue"}' 

HTTP/1.1 204 No Content 

[…] 

 

• This is a demonstration that the behaviour of ‘PUT’ and ‘POST’ requests is 
different.  

• POST will not override existing properties, PUT will 
 

 



Write API 
Worked Example 4 

$ curl -i -k --cacert /cygdrive/c/George_local/GOCDB/certs/escience-root.pem --cert 
/cygdrive/c/George_local/personalCerts/2016.crt.pem --key /cygdrive/c/George_local/personalCerts/2016.key.pem -X PUT 
https://goc.egi.eu/gocdbpi/V5/endpoint/6313/ExtensionProperties/TestProp -d '{"value":"SomeValue"}' 

HTTP/1.1 204 No Content 

[…] 

 

$ curl -i -k --cacert /cygdrive/c/George_local/GOCDB/certs/escience-root.pem --cert 
/cygdrive/c/George_local/personalCerts/2016.crt.pem --key /cygdrive/c/George_local/personalCerts/2016.key.pem -X DELETE 
https://goc.egi.eu/gocdbpi/V5/endpoint/6313/ExtensionProperties/TestProp 

HTTP/1.1 204 No Content 

[…] 

 

• Finally I wanted to show that properties can also be added and deleted one 
at a time 

 



Future Developments 

• The development roadmap for GOCDB, up to the end of 
EGI Engage, can be found here. 

• This contains several tasks, but the main one relating to 
the information space is extending the write API to 
enable: 

– Creation, update, and deletion of service endpoints 

– Update of details of services 

https://wiki.egi.eu/wiki/EGI-Engage:TASK_JRA1.4_Operations_Tools#GOCDB
https://rt.egi.eu/rt/Ticket/Display.html?id=11020


Future Developments 
• Additionally over coming months we will be working on: 

– Data freshness verification 

– Completing integration with EGI checkIn service 

– Changes to scheduled downtime rules (subject to 
continuing discussion) 

• Beyond EGI Engage we will be replacing the current UI 
with a  modern web framework 

• GOCDB is developed in response to community need. If 
there are things you think could be improved or new 
features that you believe would improve it, please 
contact: gocdb-admins@mailman.egi.eu. 

mailto:gocdb-admins@mailman.egi.eu
mailto:gocdb-admins@mailman.egi.eu
mailto:gocdb-admins@mailman.egi.eu


Questions? 

All of our source code is on GitHub: https://github.com/gocdb/GOCDB/  

https://github.com/gocdb/GOCDB/

