
Charging and Billing

Giuseppe Attardi
Department CSD
Consortium GARR

Roma, 23 June 2017

Architecture

l A typical accounting process consists
in the following steps:
§ Metering
§ Mediation
§ Accounting
§ Pricing
§ Charging
§ Billing
§ Financial Clearing

Cyclops

l Cyclops is an open-source accounting and billing framework,
actively developed and maintained by ICCLab, consisting of
micro-services, that enables agile, model-based accounting,
billing for cloud and cloud based services.

l UDR micro service
§ stores the usage data records into an InfluxDB time series database

and based on developer's preference, published over RabbitMQ.
l RC micro service:

§ Rating function
• Once UDR publishes usage data records over RabbitMQ, the rating function

takes care of calculating charge data records.
§ CDR micro service

• The Rating function is also responsible for sending the created charge data
records to the CDR micro service, which persists them into the time series
database and also makes them available through RESTful API queries.

Ceilometer Collector

l operates on an internal
scheduler, periodically
asking OpenStack for new
usage records.

l records are processed,
harmonised and
broadcasted to all RCB
Cyclops.

Data
CumulativeMeterUsage

id Int autoincrement

usageCounter double

usageKey String

OpenStackMeter

user_id String

name String

resource_id String

source String

meter_id String

project_id String

type String

unit String

AbstractOpenStackCeilometerUsage

_class String Name of class

time timestamp Measurement time

account String User account name

usage Double Usage value

unit String Meter Unit

metadata Map<String, Object> Metadata

Collectors
CPU DiskDeviceUsage Instance

CPUdelta DiskReadBytes IpFloating

CPUutil DiskReadBytesRate MemoryResident

DiskAllocation DiskReadRequests MemoryUsage

DiskCapacity DiskReadRequestRate NetworkIncomingBytes

DiskDeviceAllocation DiskUsage NetworkIncomingBytesRate

DiskDeviceCapacity DiskWriteBytes NetworkIncomingPackets

DiskDeviceReadBytes DiskWriteBytesRate NetworkIncomingPacketsRate

DiskDeviceReadBytesRate DiskWriteRequests NetworkOutgoingBytes

DiskDeviceReadRequests DiskWriteRequestRate NetworkOutgoingBytesRate

DiskDeviceReadRequestRate DiskUsage NetworkOutgoingPackets

DiskDeviceUsage Image NetworkOutgoingPacketsRate

DiskDeviceWriteBytes ImageDownload StorageObjects

DiskDeviceWriteBytesRate ImageServed StorageObjectsContainers

DiskDeviceWriteRequests ImageSize StorageObjectsSize

DiskDeviceWriteRequestRate Usage

UDR
OpenStackUsageData

count int Data output count

duration_start timestamp time where the measurement started

duration_end timestamp time where the measurement ended

min double Minimum value in the measurement

max double Maximum value in the measurement

sum double Sum of values in the measurement

avg double Average value in the measurement

period double Collection period

period_start timestamp time where the collection period started

period_end timestamp time where the collection period ended

duration double Duration of the measurement

unit string Measurement usage unit

groupby Map map containing project_id, user_id and resource_id

Ceilometer API and Collector

l Unfortunately the Ceilometer API and Collector on which
Cyclops relies have been discontinued because of scalability
limits

l They have been replaced by Gnocchi

Ceilometer + Gnocchi + Aodh Architecture
l Ceilometer (data collection): to

efficiently collect, normalise and
transform data produced by
OpenStack services
§ Polling agent: daemon designed to

poll OpenStack services and build
Meters

§ Notification agent: daemon designed
to listen to notifications on message
queue, convert them to Events and
Samples, and apply pipeline actions

l Gnocchi (metric storage): to provide
a time-series resource indexing,
metric storage service

l Aodh (alarming): to enable the ability
to trigger actions based on defined
rules against sample or event data
collected by Ceilometer

l See
https://docs.openstack.org/developer
/ceilometer/architecture.html

Gathering the data
l Notification agent: takes

messages generated on the
notification bus and transforms
them into Ceilometer samples
or events. This is the
preferred method of data
collection.

l Polling agent: polls some API
or other tool to collect
information at a regular
interval

Notification agents: Listening for data

l Notification daemon (agent-notification) monitors the message queue for data
sent by other OpenStack components such as Nova, Glance, Cinder, Neutron,
Swift, Keystone, as well as Ceilometer internal communication.
§ Loads one or more listener plugins
§ Sample-oriented plugins provide a method to list the event types they’re interested in and a callback

for processing messages accordingly

Processing the data

Pipeline Manager

Transforming the data Publishing the data

Proposed Solution

l Ceilometer (data collection)
l Gnocchi (metrics as a service)
l CloudKitty (rating and billing)

Database di Gestione (1)

Database di Gestione (2)

Why Juju

Declarative Modeling
l App A requires:

§ X GB memory and Y CPU
§ N GB storage
§ To talk with B and C
§ URL contact
§ Run locally, close to B A

CB

Declarative Modeling

l Bikash Koley, director of Google Architecture:
§ 70% of outages are due to interventions on the infrastructure
§ Human mind unable to keep track of the full state of a complex system
§ It must be done by software

l Focus on automation: code first
l Describe what, not how
l Workflow Engine generates execution plan from the desired

architecture
l Asynchronous process that converges by computing the differences

between the current and the desired state
l See:

§ https://www.thinkmind.org/download.php?articleid=patterns_2017_2_30_
78006

§ https://arxiv.org/pdf/1706.05272

Automation Tools

Juju Architecture

Juju GUI

Juju CLI

Juju State Server

IaaS

MongoAPI Server Provisioning
Server

Instance
LXC

Workload

LXC
Workload

Instance
LXC

Workload

LXC
Workload

Instance
LXC

Workload

LXC
Workload

Package
Repository

OpenStackMaaS

Charm
Store

Charm

Basic Series of Events
l install

§ Invoked just once when the charm is deployed
l config-changed

§ Invoked whenever a configuration parameter is changed (either grom the
GUI, or from the CLI)

l relation-joined, relation-changed
§ When a relation is added to a charm relation-joined fires first, so that the

two units can communicate with each other, and then relation-changed
fires

l leader-elected
§ Occurs when many nodes require a “leader” node to coordinate among

them
l pool-storage-attached, pool-storage-detached

§ Actions to take when a storage pool is attached/detached

Hooks

l Represent the handlers to be run when an event occurs
l Hooks must be idempotent

§ To avoid inconsistencies or divergence if run more than once

Bundles

l Bundles describe a service consisting of several charms
l They express constrains, configuration parameters and

relationships between charms that provide/implement an
interface

l Can be configured before/after deployment
l They provide scalability options

Juju Engine

l The Juju engine follows a reactive pattern, triggered by events
that cause corresponding hook handlers to run

l Multiple handlers may match for a given hook and will be run
in a non-determined order

l Running the handlers or issuing Juju commands may cause
additional events

l The state engine is evaluated every time an event occurs
l The engine runs until convergence to a stable state

Deployment bundle Moodle

Federation with External Clouds: AWS

$ ssh -i aws.pem ubuntu@90.147.166.80

$ juju clouds
Cloud Regions Default Type Description
aws 12 us-east-1 ec2 Amazon Web Services
aws-china 1 cn-north-1 ec2 Amazon China
aws-gov 1 us-gov-west-1 ec2 Amazon (USA Government)
azure 18 centralus azure Microsoft Azure
azure-china 2 chinaeast azure Microsoft Azure China
cloudsigma 5 hnl cloudsigma CloudSigma Cloud
google 4 us-east1 gce Google Cloud Platform

$ juju deploy ~/mediawiki-single

$ juju status
Model Controller Cloud/Region Version
default aws-us-east-1 aws/us-east-1 2.0.2

App Version Status Scale Charm Store Rev OS Notes
mediawiki unknown 1 mediawiki jujucharms 3 ubuntu exposed
mysql waiting 0 mysql jujucharms 29 ubuntu

Unit Workload Agent Machine Public address Ports Message
mediawiki/1* unknown idle 2 54.161.6.44

Machine State DNS Inst id Series AZ
2 started 54.161.6.44 i-02d632e9b1d7b8507 trusty us-east-1a

Access to Juju
controller

Available clouds

MediaWiki application

MediaWiki Deployed on AWS: Juju view

MediaWiki Deployed on AWS: AWS View

Long Tail of Science

l Self-service App oriented to researchers from any domain
l Without expertise in system administration
l Catalogues of over200 applications at jujucharms.com

