FENIX - Federated engine for information exchange

Federated data & computing infrastructure

Giuseppe Fiameni (CINECA) et al

g.Fiameni@cineca.it
The Human Brain Project

• Research Communities: The Human Brain Project

Goals of the Human Brain Project (HBP)
- Enable research aiming for understanding of the human brain
- Transfer neuroscience knowledge for development of future technologies

• FET Flagship project funded by EC
- Future & Emerging Technologies projects (co-)funded by European Commission
- Science-driven, seeded from FET, extending beyond ICT
- Ambitious, unifying goal, large-scale

• Current HBP status
- 114 participants in Specific Grant Agreement 1 (SGA1)
- SGA1 runs from 2016-18 with an overall budget of about € 110M
High Performance Analytics & Computing Platform

As part of the HBP, we build and operate a supercomputing, data and visualization infrastructure that enables scientists to

- Run large-scale, data intensive, interactive brain simulations up to the size of a full human brain
- Manage the large amounts of data used and produced in the Human Brain Project
- Manage complex workflows comprising concurrent simulation, data analysis and visualization workloads
The role of FENIX

• Deliver a multi-purpose infrastructure offering scalable compute and data services in a federated manner

• Support new communities
 - Neuroscience (remains a main driver to steer the design of the infrastructure)
 - Materials science
 - Genomics
 - Physical science experiments
 - Others communities with similar requirements

• Supported by national funds and EC through the ICEI Project (Interactive Computing E-Infrastructure)
Rationale behind FENIX

• Variety of data sources
 - Distributed data sources
 - Heterogeneous characteristics

• HPC systems as source and sink of data
 - Scalable model simulations creating data
 - Data processing using advanced data analytics methods

• Aim for data curation, comparative data analysis and for building-up knowledge graphs

Need for infrastructure to facilitate data sharing and high-performance data processing.
Overview of the Fenix Infrastructure
FENIX Services

Specific service targets:
- Interactive Computing Services
- Scalable Computing Services
- Federated Data Services

• Additionally
 - IaaS environments (SW-defined Compute, Storage and Network)
 - Container Services, DB services, Site-local AAI
 - Scalable and Interactive Compute, Visualisation, Dense memory and Storage tiers
 - Active- and Archival-class Storage

DI4R - Brussels 30 Nov.
1 Dec. 2017
Key challenges

- **Common AAI infrastructure**
 - Federated user identities
 - Single sign-on

- **Federation of storage resources**
 - Scalable vs. federated access

- **Integration of interactive computing resources**
 - New type of resource

- **Management of resource allocation**
 - Different resource classes
 - Delegation of resource allocation to research communities
Key architectural concepts
Interactive Computing Services

• **Interactivity**
 - capability of a system to support distributed computing workloads while permitting
 - Monitoring of applications
 - On-the-fly interruption by the user

• **Architectural requirements**
 - Interactive access
 - Tight integration with scalable compute resources
 - Fast access to data. Improve data movement across multiple storage layers (NVRAM, NVMe, Apache Pass, 3DXPoint, SSD, Disks, Tapes, etc.)

• **Support for interactive user frameworks**
 - Jupyter notebook
 - R
 - Matlab/Octave
Data Store Types

• **Archival Data Repository**
 - Data store optimized for capacity, reliability and availability
 - Used for storing large data products permanently that cannot be easily regenerated

• **Active Data Repository**
 - Data repository localized close to computational or visualization resources
 - Used for storing temporary slave replica of large data objects

• **Upload buffers**
 - Used for keeping temporary copy of large, not easy to reproduce data products, before these are moved to an Archival Data Repository
Architectural Concepts: HPC vs. Cloud

• **State-of-the-art: HPC**
 - Highly-scalable parallel file systems
 • Scale to $O(10)$ clients
 • Optimised for parallel read/write streams
 - Interface(s): POSIX
 • Well established interface
 • Wealth of middleware relying on this interface

• **State-of-the-art: Cloud**
 - Solutions for widely distributed storage resources
 • Optimised for flexibility
 - Various interfaces: Amazon S3, OpenStack Swift
 • Typically web-based stateless interfaces
 - Advantages compared to POSIX
 • Suitable for distributed environments (e.g. support for federated IDs)
 • Simple clients
 • Rich mechanisms for access control
Storage Architecture

• **Concept**
 - Federate archival data repositories with Cloud interfaces
 - Non-federated active data repositories with POSIX interface accessible from HPC nodes

• **Envisaged implementation:**
 Mandate same technology at all sites
 - Current candidate: OpenStack SWIFT
Selected Use Cases

• GUI based interaction with extreme scale network models
 - Various simulators supporting different models
 - Need for interactive visualisation of network generation and simulation

• Enrichment of the human brain atlas with qualitative and quantitative datasets
 - Spatial and semantic registration of diverse datasets to the human brain atlas

• Validation of neuromorphic results
 - Analysis of the similarities and differences of results obtained through simulation on HPC and from neuromorphic systems

https://brainscales.kip.uni-heidelberg.de/
Scalable Computing Services

Scalable computing services are a key element of the Fenix Infrastructure

- **Piz Daint** at CSCS will form a major part of these services
 - A hybrid multi-core system with 7135 nodes
 - >27 PFlop/s aggregate peak
- The Piz Daint environment offers
 - Scalable and Interactive Computing
 - Visualization
 - Dense memory and storage tiers
 - High-throughput Active Storage
 - All within one system
Thank you!
Credits

• **BSC**
 - Javier Bartolome, Sergi Girona and others

• **CEA**
 - Hervé Lozach, Jacques-Charles Lafoucriere, Jean-Philippe Nomine, Gilles Wiber and others

• **CINECA**
 - Carlo Cavazzoni, Giuseppe Fiameni, Roberto Mucci, Debora Testi and others

• **CSCS**
 - Colin McMurtrie, Sadaf Alam, Thomas Schulthess and others

• **Jülich Supercomputing Centre**
 - Anna Lührs, Björn Hagemeier, Boris Orth, Thomas Lippert and others