FENIX - Federated engine for information exchange

Federated data & computing infrastructure

Giuseppe Fiameni (CINECA) et al

g.Fiameni@cineca.it

DI4R - Brussels 30 Nov. 1 Dec. 2017

The Human Brain Project

- Research Communities: The Human Brain Project Goals of the Human Brain Project (HBP)
 - Enable research aiming for understanding of the human brain
 - Transfer neuroscience knowledge for development of future technologies

• FET Flagship project funded by EC

- Future & Emerging Technologies projects (co-)funded by European Commission
- Science-driven, seeded from FET, extending beyond ICT
- Ambitious, unifying goal, large-scale

Current HBP status

- 114 participants in Specific Grant Agreement 1 (SGA1)
- SGA1 runs from 2016-18 with an overall budget of about € 110M

DI4R - Brussels 30 Nov. 1 Dec. 2017

High Performance Analytics & Computing Platform

As part of the HBP, we build and operate a supercomputing, data and visualization infrastructure that enables scientists to

- Run large-scale, data intensive, interactive brain simulations up to the size of a full human brain
- Manage the large amounts of data used and produced in the Human Brain Project
- Manage complex workflows comprising concurrent simulation, data analysis and visualization workloads

DI4R - Brussels 30 Nov. 1 Dec. 2017

arcomputación

The role of FENIX

• Deliver a multi-purpose infrastructure offering scalable compute and data services in a federated manner

Support new communities

- Neuroscience (remains a main driver to steer the design of the infrastructure)
- Materials science
- Genomics
- Physical science experiments
- Others communities with similar requirements
- Supported by national funds and EC through the ICEI Project (Interactive Computing E-Infrastructure)

DI4R - Brussels 30 Nov. 1 Dec 2017

Rationale behind FENIX

Variety of data sources

- Distributed data sources
- Heterogeneous characteristics

HPC systems as source and sink of data

- Scalable model simulations creating data
- Data processing using advanced data analytics methods
- Aim for data curation, comparative data analysis and for building-up knowledge graphs

Need for infrastructure to facilitate data sharing and high-performance data processing.

DI4R - Brussels 30 Nov. 1 Dec. 2017

Overview of the Fenix Infrastructure

FENIX Services

Specific service targets:

- Interactive Computing Services
- Scalable Computing Services
- Federated Data Services

Additionally

- IaaS environments (SW-defined Compute, Storage and Network)
- Container Services, DB services, Site-local AAI
- Scalable and Interactive Compute, Visualisation, Dense memory and Storage tiers
- Active- and Archival-class Storage

DI4R - Brussels 30 Nov. 1 Dec. 2017

percomputación

Key challenges

Common AAI infrastructure

- Federated user identities
- Single sign-on
- Federation of storage resources
 - Scalable vs. federated access

Integration of interactive computing resources

- New type of resource

Management of resource allocation

- Different resource classes
- Delegation of resource allocation to research communities

DI4R - Brussels 30 Nov. 1 Dec. 2017

mputación

Key architectural concepts

DI4R - Brussels 30 Nov. 1 Dec. 2017

Interactive Computing Services

Interactivity

- capability of a system to support distributed computing workloads while permitting
 - Monitoring of applications
 - On-the-fly interruption by the user

Architectural requirements

- Interactive access
- Tight integration with scalable compute resources
- Fast access to data. Improve data movement across multiple storage layers (NVRAM, NVMe, Apache Pass, 3DXPoint, SSD, Disks, Tapes, etc.)

Support for interactive user frameworks

- Jupyter notebook
- R
- Matlab/Octave

DI4R - Brussels 30 Nov. 1 Dec. 2017

Data Store Types

Archival Data Repository

- Data store optimized for capacity, reliability and availability
- Used for storing large data products permanently that cannot be easily regenerated

Active Data Repository

- Data repository localized close to computational or visualization resources
- Used for storing temporary slave replica of large data objects

Upload buffers

- Used for keeping temporary copy of large, not easy to reproduce data products, before these are moved to an Archival Data Repository

DI4R - Brussels 30 Nov. 1 Dec. 2017

Architectural Concepts: HPC vs. Cloud

State-of-the-art: HPC

- Highly-scalable parallel file systems
 - Scale to O(10) clients
 - Optimised for parallel read/write streams
- Interface(s): POSIX
 - Well established interface
 - Wealth of middleware relying on this interface

State-of-the-art: Cloud

- Solutions for widely distributed storage resources
 - Optimised for flexibility
- Various interfaces: Amazon S3, OpenStack Swift
 - Typically web-based stateless interfaces
- Advantages compared to POSIX
 - Suitable for distributed environments (e.g. support for federated IDs)
 - Simple clients
 - Rich mechanisms for access control

DI4R - Brussels 30 Nov. 1 Dec. 2017

Storage Architecture

Concept

- Federate archival data repositories with Cloud interfaces
- Non-federated active data repositories with POSIX interface accessible from HPC nodes
- Envisaged implementation: Mandate same technology at all sites
 - Current candidate: OpenStack SWIFT

DI4R - Brussels 30 Nov. 1 Dec. 2017

Selected Use Cases

• GUI based interaction with extreme scale network models

- Various simulators supporting different models
- Need for interactive visualisation of network generation and simulation
- Enrichment of the human brain atlas with qualitative and quantitative datasets
 - Spatial and semantic registration of diverse datasets to the human brain atlas

Validation of neuromorphic results

 Analysis of the similarities and differences of results obtained through simulation on HPC and from neuromorphic systems

https://brainscales.kip.uni-heidelberg.de/

DI4R - Brussels 30 Nov. 1 Dec. 2017

Scalable Computing Services

Scalable computing services are a key element of the Fenix Infrastructure

- *Piz Daint* at CSCS will form a major part of these services
 - A hybrid multi-core system with 7135 nodes
 - >27 PFlop/s aggregate peak
- The Piz Daint environment offers
 - Scalable and Interactive Computing
 - Visualization
 - Dense memory and storage tiers
 - High-throughput Active Storage
 - All within one system

DI4R - Brussels 30 Nov. 1 Dec. 2017

arcelona upercomputing enter ntro Nacional de Supercomputación

Thank you!

DI4R - Brussels 30 Nov. 1 Dec. 2017

Credits

• BSC

- Javier Bartolome, Sergi Girona and others
- CEA
 - Hervé Lozach, Jacques-Charles Lafoucriere, Jean-Philippe Nomine, Gilles Wiber and others

• CINECA

- Carlo Cavazzoni, Giuseppe Fiameni, Roberto Mucci, Debora Testi and others
- CSCS
 - Colin McMurtrie, Sadaf Alam, Thomas Schulthess and others
- Jülich Supercomputing Centre
 - Anna Lührs, Björn Hagemeier, Boris Orth, Thomas Lippert and others

DI4R - Brussels 30 Nov. 1 Dec. 2017

