
Bruce Becker | EGI Operations Team | bruce.becker@egi.eu

Trusted confiuratons
for UMD deployments

Bruce Becker, EGI Operatons

 bruce.becker@eii.eu
 @brusisceddu
 brucellino

0000-0002-6607-7145

Bruce Becker | EGI Operations Team | bruce.becker@egi.eu

Outline

● Ansible in the UMD path to producton

● A style guide for EGI
– What makes our roles ‘ours’ ?

– How can we trust each others’ work ?

● Tests and Infrastructure Specifcatons

● Collaboraton and re-usability

Bruce Becker | EGI Operations Team | bruce.becker@egi.eu

Ansible in the UMD path to producton

● We used to have a unique* confguraton management tool –
YAIM

● YAIM solved at least two problems :
– Confguraton Management : single place in which to express the desired

confguraton state

– Deployment : executable means to achieve the state

● UMD products slowly dropped YAIM, favouring one or other
tool for confguraton management :

– Puppet

– Ansible

Bruce Becker | EGI Operations Team | bruce.becker@egi.eu

Site confiuraton manaiement – too many
optons ?

● Sites are now freer to choose how to confgure and deploy middleware

● The choice of tool comes down to local expertse and historical
preferences

● Support for debugging confguraton issues however becomes harder –
community tends to split into ‘if you use this tool, change this
variable… oh, sorry you use other tool, can’t help.’

● Given that there is no objectve measure by which one tool is beter
than another, can we fnd a way to support each other?

● IE, does a site admin really have to understand the internals of Puppet
or Ansible to confgure the middleware at their site ?

Bruce Becker | EGI Operations Team | bruce.becker@egi.eu

Ansible or Puppet – does it mater ?

● It is difcult to say why Ansible or Puppet have the following
they have in certain environments.

● There are design and ecosystem consideratons which suit
diferent scenarios beter in each case

● Both can be used to achieve contnuous, correct deployment

● So : does it mater to the site admin whether a product
expresses a preference for either ? I hazard that it should not.

● UMD deployment should be a conservatve force :
– End states should not depend on the path taken to get there

Bruce Becker | EGI Operations Team | bruce.becker@egi.eu

Many tools : Why ? Pair proirammini

● First of : Confguraton code is code. Treat it as such.

● Pair programming allows collaboraton and quality code review.

● If both tools should achieve the same state for a given
middleware product, we should be able to review each others’
work.

● But they are diferent languages and paradigms? How can we
review each others’ work ?

– Focus on paterns instead of specifc implementaton

– Collaborate on the objectve measures of quality – ie the fnal result

Bruce Becker | EGI Operations Team | bruce.becker@egi.eu

Why ? Cross-validated deployments

● Why are there 4 experiments looking for the Higgs ?

● There are always biases and assumptons in deployment
and confguraton scenarios – these make their way into
the code for deployment.

● They implicitly exclude certain use cases or scenarios

● Cross-validatng deployments with diferent tools tends to
surface these assumptons and force us to confront them.

● A good goal would be to achieve consistent deployments
from a given state, regardless of the means to achieve it.

Bruce Becker | EGI Operations Team | bruce.becker@egi.eu

Why ? : A healthy ecosystem

● Reliance on a single tool and tribal knowledge around it is
not a good sign

● Healthy ‘inter-breeding’ of ideas from slightly diferent
ways of doing things will probably lead to beter health of
the UMD ecosystem and whatever proceeds it.

● We can teach paterns and skills rather than tools – these
are useful to industry (beter employability) but also makes
it easier for us as a community to atract talent

Bruce Becker | EGI Operations Team | bruce.becker@egi.eu

EGI in the Ansible universe : the EGI Style Guide

● Ansible is simple but powerful IT automaton – really temptng
to just solve problems and be done with it.

● However, this same power leads to massive divergence in the
way in which problems are solved, making it difcult to trust
that other peoples’ work will work for you.

● e.g. you fnd a role for confguring CREAM :
– Will it respect my local setup ?

– Does it do the network confguraton ?

– Who maintains this ?

– Is it even correct ?

Bruce Becker | EGI Operations Team | bruce.becker@egi.eu

Objectve measures

● Step 1 : A Style Guide
 EGI-Foundaton/ansible-style-guide

● Expresses opinions on :
– Documentng roles

– Ansible syntax in roles

– Testng role scenarios, testng tools

– Role release and publicaton

– Collaboratng with code

● Read more : brucellino.github.io/blog/Ansible-Style-Guide

● WIP : egi-foundaton.github.io/ansible-style-guide/

https://github.com/EGI-Foundation/ansible-style-guide
https://brucellino.github.io/blog/Ansible-Style-Guide
https://egi-foundation.github.io/ansible-style-guide/

Bruce Becker | EGI Operations Team | bruce.becker@egi.eu

Ansible Style Guide rôle Skeleton

● When creatng new roles, one typically uses ansible-galaxy init
<role name>

● The default has several important bits ‘missing’ which are necessary for
engendering re-use and trust :

– Issue and PR templates, contributng guide, links to EGI support structures

– Relevant platorms which EGI supports in meta.yml

– Properly-generated .travis.yml

– Proper webhooks on build-passing to galaxy.ansible.com

● ansible-galaxy init --role-skeleton=ansible-style-
guide/egi-galaxy-skeleton high-performance-grid-cloud

Bruce Becker | EGI Operations Team | bruce.becker@egi.eu

Objectve measures

● Step 2 : A compliance profle
 EGI-Foundaton/ansible-fashion-police

● We implement controls (using Inspec) for:
– Automated testng

– GitHub repository confguraton

– Role Metadata

– Role Skeleton

https://github.com/EGI-Foundation/ansible-fashion-police

Bruce Becker | EGI Operations Team | bruce.becker@egi.eu

One role, many scenarios

● The underlying platorm is changing – clouds, vms, DMZs,
containers, etc

● The confguraton tool should not enforce a partcular
executon environment, but should express the
middleware product appropriately in the respectve
environment

● We need to mock and test various producton
environments

Bruce Becker | EGI Operations Team | bruce.becker@egi.eu

Can we apply traditonal TDD to Infrastructure ?

● Molecule provides a general-purpose mock and testng
framework for Ansible roles

● Allows developer to defne many deployment scenarios
and test against them :

● Easiest is to test in Docker, but can test against
OpenStack or bare-metal scenarios, from given startng
points

http://molecule.readthedocs.io/

Bruce Becker | EGI Operations Team | bruce.becker@egi.eu

TDD for
Ansible roles

Bruce Becker | EGI Operations Team | bruce.becker@egi.eu

Infrastructure Models and Specifcatons

● Remember : ‘’UMD
deployment should be a
conservatve force’’

● We should be able to model
deployments independently
of the tool used...

Bruce Becker | EGI Operations Team | bruce.becker@egi.eu

Infrastructure Models and Specifcatons
brucellino.iithub.io/bloi/Style-Guide-In-Acton

https://brucellino.github.io/blog/Style-Guide-In-Action

Bruce Becker | EGI Operations Team | bruce.becker@egi.eu

Beter use of infrastructure : Ansible Galaxyy

Bruce Becker | EGI Operations Team | bruce.becker@egi.eu

Beter use of infrastructure : Ansible Galaxyy

Bruce Becker | EGI Operations Team | bruce.becker@egi.eu

Beter use of infrastructure : Quay

● CI on Travis pushes to Quay on build-passing :
– artefacts immediately available for re-use in subsequent steps of the

pipeline

● Something similar could be done for VMS (push to AppDB)

● Vulnerabilites and obsolete packages immediately visibile
– Can open issues against the repo automatcally

Bruce Becker | EGI Operations Team | bruce.becker@egi.eu

DevSecOps – thanks clair

Bruce Becker | EGI Operations Team | bruce.becker@egi.eu

Collaboraton and re-usability

● Putting development into context with a solid foundaton
and objectve measures makes it easier for operatons to
trust the results thereof.

● Both Dev and Ops can agree on the fnal state of the
service in given scenarios

● Clear case for following TDD and BDD using relevant
tools (TestInfra, Inspec, Cucumber)

● Issues in the fnal state can be traced back to code if there
is an unbroken pipeline between commit and deploy.

Bruce Becker | EGI Operations Team | bruce.becker@egi.eu

DevOps

● For us to achieve DevOps and support many more deployment
scenarios -

– Small sites with few staf, in known scenarios

– Unmanned deployments

– Diferent deployment platorms

● … we need product teams and infrastructure engineers to collaborate …
– Peer review, pull requests, infrastructure specs, documentaton

● … not on the code of the product itself, but the pipeline for delivering
that product in a viable state to the producton environment

● Close links with the ‘lightweght’ sites work from CERN and SKA HPC
ecosystem sites in Africa.

Bruce Becker | EGI Operations Team | bruce.becker@egi.eu

In summary :

● UMD confguratons should be put through the same rigourous
testng as UMD products

● Having more than one tool to achieve producton states is
good, as long as there is a community of practce in EGI around
those tools

● A community of practce is expressed in the EGI Ansible Style
Guide, along with a compliance profle.

● Allows those wantng to
– develop infrastructure components to do so smoothly and collaboratvely

– Operate infrastructure components to do so with confdence

Bruce Becker | EGI Operations Team | bruce.becker@egi.eu

links

● Style Guide, Compliance profle, Quay Org, Ansible Galaxy

● Website – egi-foundaton.github.io/ansible-style-guide

● Testng tools
– Molecule : molecule.readthedocs.io

– TestInfra : testnfra.readthedocs.io

– Inspec : www.inspec.io

– Cucumber : cucumber.io

● Blogs :
– ‘E-Infrastructure Components that are built to last’

– ‘Style Guide in Acton’

https://github.com/EGI-Foundation/ansible-style-guide
https://github.com/EGI-Foundation/Ansible-Fashion-Police
https://quay.io/organization/egi
https://galaxy.ansible.com/EGI-Foundation/
https://egi-foundation.github.io/ansible-style-guide
http://molecule.readthedocs.io/
https://testinfra.readthedocs.io/
http://www.inspec.io/
https://cucumber.io/
https://brucellino.github.io/blog/Ansible-Style-Guide
https://brucellino.github.io/blog/Style-Guide-In-Action

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

