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Outline

● Ansible in the UMD path to producton

● A style guide for EGI 
– What makes our roles ‘ours’ ?

– How can we trust each others’ work ?

● Tests and Infrastructure Specifcatons

● Collaboraton and re-usability
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Ansible in the UMD path to producton

● We used to have a unique* confguraton management tool – 
YAIM

● YAIM solved at least two problems :
– Confguraton Management : single place in which to express the desired 

confguraton state

– Deployment : executable means to achieve the state

● UMD products slowly dropped YAIM, favouring one or other 
tool for confguraton management :

– Puppet

– Ansible
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Site confiuraton manaiement – too many 
optons ?

● Sites are now freer to choose how to confgure and deploy middleware

● The choice of tool comes down to local expertse and historical 
preferences

● Support for debugging confguraton issues however becomes harder – 
community tends to split into ‘if you use this tool, change this 
variable… oh, sorry you use other tool, can’t help.’

● Given that there is no objectve measure by which one tool is beter 
than another, can we fnd a way to support each other?

● IE, does a site admin really have to understand the internals of Puppet 
or Ansible to confgure the middleware at their site ?
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Ansible or Puppet – does it mater ?

● It is difcult to say why Ansible or Puppet have the following 
they have in certain environments.

● There are design and ecosystem consideratons which suit 
diferent scenarios beter in each case

● Both can be used to achieve contnuous, correct deployment

● So : does it mater to the site admin whether a product 
expresses a preference for either ? I hazard that it should not.

● UMD deployment should be a conservatve force : 
– End states should not depend on the path taken to get there
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Many tools : Why ? Pair proirammini

● First of : Confguraton code is code. Treat it as such.

● Pair programming allows collaboraton and quality code review. 

● If both tools should achieve the same state for a given 
middleware product, we should be able to review each others’ 
work.

● But they are diferent languages and paradigms? How can we 
review each others’ work ?

– Focus on paterns instead of specifc implementaton

– Collaborate on the objectve measures of quality – ie the fnal result
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Why ? Cross-validated deployments

● Why are there 4 experiments looking for the Higgs ?

● There are always biases and assumptons in deployment 
and confguraton scenarios – these make their way into 
the code for deployment.

● They implicitly exclude certain use cases or scenarios

● Cross-validatng deployments with diferent tools tends to 
surface these assumptons and force us to confront them.

● A good goal would be to achieve consistent deployments 
from a given state, regardless of the means to achieve it.
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Why ? : A healthy ecosystem

● Reliance on a single tool and tribal knowledge around it is 
not a good sign

● Healthy ‘inter-breeding’ of ideas from slightly diferent 
ways of doing things will probably lead to beter health of 
the UMD ecosystem and whatever proceeds it.

● We can teach paterns and skills rather than tools – these 
are useful to industry (beter employability) but also makes 
it easier for us as a community to atract talent
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EGI in the Ansible universe : the EGI Style Guide

● Ansible is simple but powerful IT automaton – really temptng 
to just solve problems and be done with it.

● However, this same power leads to massive divergence in the 
way in which problems are solved, making it difcult to trust 
that other peoples’ work will work for you.

● e.g.  you fnd a role for confguring CREAM :
– Will it respect my local setup ?

– Does it do the network confguraton ?

– Who maintains this ? 

– Is it even correct ?
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Objectve measures

● Step 1 : A Style Guide 
  EGI-Foundaton/ansible-style-guide

● Expresses opinions on :
– Documentng roles

– Ansible syntax in roles

– Testng role scenarios, testng tools

– Role release and publicaton

– Collaboratng with code

● Read more : brucellino.github.io/blog/Ansible-Style-Guide

● WIP : egi-foundaton.github.io/ansible-style-guide/

https://github.com/EGI-Foundation/ansible-style-guide
https://brucellino.github.io/blog/Ansible-Style-Guide
https://egi-foundation.github.io/ansible-style-guide/
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Ansible Style Guide rôle Skeleton

● When creatng new roles, one typically uses ansible-galaxy init 
<role name>

● The default has several important bits ‘missing’ which are necessary for 
engendering re-use and trust :

– Issue and PR templates, contributng guide, links to EGI support structures

– Relevant platorms which EGI supports in meta.yml

– Properly-generated .travis.yml

– Proper webhooks on  build-passing to galaxy.ansible.com

● ansible-galaxy init --role-skeleton=ansible-style-
guide/egi-galaxy-skeleton high-performance-grid-cloud
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Objectve measures

● Step 2 : A compliance profle
 EGI-Foundaton/ansible-fashion-police

● We implement controls (using Inspec) for:
– Automated testng

– GitHub repository confguraton

– Role Metadata

– Role Skeleton

https://github.com/EGI-Foundation/ansible-fashion-police
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One role, many scenarios

● The underlying platorm is changing – clouds, vms, DMZs, 
containers, etc

● The confguraton tool should not enforce a partcular 
executon environment, but should express the 
middleware product appropriately in the respectve 
environment

● We need to mock and test various producton 
environments
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Can we apply traditonal TDD to Infrastructure ?

● Molecule provides a general-purpose mock and testng 
framework for Ansible roles

● Allows developer to defne many deployment scenarios 
and test against them : 

● Easiest is to test in Docker, but can test against 
OpenStack or bare-metal scenarios, from given startng 
points

http://molecule.readthedocs.io/
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TDD for 
Ansible roles
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Infrastructure Models and Specifcatons

● Remember : ‘’UMD 
deployment should be a 
conservatve force’’

● We should be able to model 
deployments independently 
of the tool used...
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Infrastructure Models and Specifcatons
brucellino.iithub.io/bloi/Style-Guide-In-Acton

https://brucellino.github.io/blog/Style-Guide-In-Action
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Beter use of infrastructure : Ansible Galaxyy
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Beter use of infrastructure : Ansible Galaxyy
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Beter use of infrastructure : Quay

● CI on Travis pushes to Quay on build-passing : 
– artefacts immediately available for re-use in subsequent steps of the 

pipeline

● Something similar could be done for VMS (push to AppDB)

● Vulnerabilites and obsolete packages immediately visibile
– Can open issues against the repo automatcally
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DevSecOps – thanks clair
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Collaboraton and re-usability

● Putting development into context with a solid foundaton 
and objectve measures makes it easier for operatons to 
trust the results thereof.

● Both Dev and Ops can agree on the fnal state of the 
service in given scenarios

● Clear case for following TDD and BDD using relevant 
tools (TestInfra, Inspec, Cucumber)

● Issues in the fnal state can be traced back to code if there 
is an unbroken pipeline between commit and deploy.



Bruce Becker | EGI Operations Team | bruce.becker@egi.eu

DevOps

● For us to achieve DevOps and support many more deployment 
scenarios - 

– Small sites with few staf, in known scenarios

– Unmanned deployments

– Diferent deployment platorms

● … we need product teams and infrastructure engineers to collaborate …
– Peer review, pull requests, infrastructure specs, documentaton

● … not on the code of the product itself, but the pipeline for delivering 
that product in a viable state to the producton environment

● Close links with the ‘lightweght’ sites work from CERN and SKA HPC 
ecosystem sites in Africa.
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In summary :

● UMD confguratons should be put through the same rigourous 
testng as UMD products

● Having more than one tool to achieve producton states is 
good, as long as there is a community of practce in EGI around 
those tools

● A community of practce is expressed in the EGI Ansible Style 
Guide, along with a compliance profle.

● Allows those wantng to 
– develop infrastructure components to do so smoothly and collaboratvely

– Operate infrastructure components to do so with confdence
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links

● Style Guide, Compliance profle, Quay Org, Ansible Galaxy

● Website – egi-foundaton.github.io/ansible-style-guide

● Testng tools
– Molecule : molecule.readthedocs.io

– TestInfra : testnfra.readthedocs.io

– Inspec : www.inspec.io 

– Cucumber : cucumber.io

● Blogs : 
– ‘E-Infrastructure Components that are built to last’

– ‘Style Guide in Acton’

https://github.com/EGI-Foundation/ansible-style-guide
https://github.com/EGI-Foundation/Ansible-Fashion-Police
https://quay.io/organization/egi
https://galaxy.ansible.com/EGI-Foundation/
https://egi-foundation.github.io/ansible-style-guide
http://molecule.readthedocs.io/
https://testinfra.readthedocs.io/
http://www.inspec.io/
https://cucumber.io/
https://brucellino.github.io/blog/Ansible-Style-Guide
https://brucellino.github.io/blog/Style-Guide-In-Action
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