Trusted configurations
for UMD deployments

Bruce Becker, EGI Operations

B< bruce.becker@egi.eu

B2 @brusisceddu

() brucellino
0000-0002-6607-7145

Bruce Becker | EGI Operations Team | bruce.becker@egi.eu

Outline

Ansible in the UMD path to production
e Astyle guide for EGI

- What makes our roles ‘ours’ ?

— How can we trust each others’ work ?

Tests and Infrastructure Specifications

Collaboration and re-usability

Ansible in the UMD path to production

* We used to have a unique* configuration management tool -
YAIM

* YAIM solved at least two problems :

- Configuration Management : single place in which to express the desired
confguration state

- Deployment : executable means to achieve the state

UMD products slowly dropped YAIM, favouring one or other
tool for configuration management :

— Puppet
- Ansible

Bruce Becker | EGI Operations Team | bruce.becker@egi.eu

Site configuration management - too many
options ?

* Sites are now freer to choose how to configure and deploy middleware

* The choice of tool comes down to local expertise and historical
preferences

* Support for debugging configuration issues however becomes harder -
community tends to split into ‘if you use this tool, change this
variable... oh, sorry you use other tool, can’t help.

* Given that there is no objective measure by which one tool is better
than another, can we find a way to support each other?

* |E, does a site admin really have to understand the internals of Puppet
or Ansible to configure the middleware at their site ?

Bruce Becker | EGI Operations Team | bruce.becker@egi.eu

Ansible or Puppet - does it matter ?

* [tis difficult to say why Ansible or Puppet have the following
they have in certain environments.

* There are design and ecosystem considerations which suit
different scenarios better in each case

* Both can be used to achieve continuous, correct deployment

* So :does it matter to the site admin whether a product
expresses a preference for either ? | hazard that it should not.

« UMD deployment should be a conservative force :
- End states should not depend on the path taken to get there

Bruce Becker | EGI Operations Team | bruce.becker@egi.eu

Many tools : Why ? Pair programming

* First off : Configuration code is code. Treat it as such.
* Pair programming allows collaboration and quality code review.

* |f both tools should achieve the same state for a given
middleware product, we should be able to review each others’
work.

* But they are different languages and paradigms? How can we
review each others’ work ?
— Focus on patterns instead of specific implementation

- Collaborate on the objective measures of quality - ie the final result

Bruce Becker | EGI Operations Team | bruce.becker@egi.eu

Why ? Cross-validated deployments

 Why are there 4 experiments looking for the Higgs ?

 There are always biases and assumptions in deployment
and configuration scenarios - these make their way into
the code for deployment.

 They implicitly exclude certain use cases or scenarios

* Cross-validating deployments with different tools tends to
surface these assumptions and force us to confront them.

* A good goal would be to achieve consistent deployments
from a given state, regardless of the means to achieve it.

Bruce Becker | EGI Operations Team | bruce.becker@egi.eu

Why ? : A healthy ecosystem

* Reliance on a single tool and tribal knowledge around it is
not a good sign

* Healthy ‘inter-breeding’ of ideas from slightly different
ways of doing things will probably lead to better health of
the UMD ecosystem and whatever proceeds it.

* We can teach patterns and skills rather than tools - these
are useful to industry (better employability) but also makes
it easier for us as a community to attract talent

Bruce Becker | EGI Operations Team | bruce.becker@egi.eu

EGI in the Ansible universe : the EGI Style Guide

* Ansible is simple but powerful IT automation - really tempting
to just solve problems and be done with it.

 However, this same power leads to massive divergence in the
way in which problems are solved, making it difficult to trust
that other peoples’ work will work for you.

* e.g. you find a role for configuring CREAM :

Will it respect my local setup ?
Does it do the network configuration ?
Who maintains this ?

Is it even correct ?

Bruce Becker | EGI Operations Team | bruce.becker@egi.eu

Objective measures

Step 1 : A Style Guide
() EGI-Foundation/ansible-style-guide

Expresses opinions on :
- Documenting roles
- Ansible syntax in roles
- Testing role scenarios, testing tools
- Role release and publication

— Collaborating with code

Read more : brucellino.github.io/blog/Ansible-Style-Guide

WIP : egi-foundation.github.io/ansible-style-guide/

https://github.com/EGI-Foundation/ansible-style-guide
https://brucellino.github.io/blog/Ansible-Style-Guide
https://egi-foundation.github.io/ansible-style-guide/

Ansible Style Guide role Skeleton

* When creating new roles, one typically uses ansible-galaxy init
<role name>

* The default has several important bits ‘missing’ which are necessary for
engendering re-use and trust :

Issue and PR templates, contributing guide, links to EGI support structures

Relevant platforms which EGI supports in meta.yml

— Properly-generated .travis.yml

Proper webhooks on build-passing to galaxy.ansible.com

* ansible-galaxy init --role-skeleton=ansible-style-
guide/egi-galaxy-skeleton high-performance-grid-cloud

Bruce Becker | EGI Operations Team | bruce.becker@egi.eu

Objective measures

e Step 2 : A compliance profile
() EGI-Foundation/ansible-fashion-police

* We implement controls (using Inspec) for:
- Automated testing
— GitHub repository configuration
- Role Metadata

- Role Skeleton

https://github.com/EGI-Foundation/ansible-fashion-police

One role, many scenarios

* The underlying platform is changing - clouds, vms, DMZs,
containers, etc

* The configuration tool should not enforce a particular
execution environment, but should express the
middleware product appropriately in the respective
environment

 We need to mock and test various production
environments

Bruce Becker | EGI Operations Team | bruce.becker@egi.eu

Can we apply traditional TDD to Infrastructure ?

* Molecule provides a general-purpose mock and testing
framework for Ansible roles

* Allows developer to define many deployment scenarios
and test against them :

* Easiest is to test in Docker, but can test against
OpenStack or bare-metal scenarios, from given starting
points

Bruce Becker | EGI Operations Team | bruce.becker@egi.eu

http://molecule.readthedocs.io/

LINT

TDD for tatic Language checks
Ansible roles

DEPENDENCY

Check Ansible
role dependencies

CREATE

Create base
nvironment

CONVERGE

Provision with
playbook

Implement
VERIFY functionality

Repeat

Run (failing)
provisioning

Run (passing)
infra tests

infra tests

Ensure refactored code
passes tests

GREEN

Refactor code
and tests

Bruce Becker | El

Infrastructure Models and Specifications

e Remember: UMD

deployment should be a

conservative force” ANSIBLE ROLE :

vMD
 We should be able to model

deployments independently l

of the tool used...

ANSIBLE ROLE;
VOMS cLIENT

VAN

ANSIBLE RAOLE:
VsER INTERFACE

ANSIBLE ROLE;
WaoeKer NObE

Bruce Becker | EGI Operations Team | bruce.becker@egi.eu

Infrastructure Models and Specifications
brucellino.github.io/blog/Style-Guide-In-Action

Apply Test
ANSIBLE RALE: Commit UMD 1ole - UMD 1o0le h-f L~ UMD Container
vMD AN

VOMS client

Apply VOMS Test VOMS
ANSIBLE RAOLE: Commit client role client To0le L Container
L > » 4\

VOMS cLieNT

User Interface

Apply Usex Test User
ANSIBLE RALE: Commit Intexrface IOleh-— Interface Iole” L~ Containex
VseEer TNTERFACE PN

Bruce Becker | EGI Operations Team | bruce.becker@egi.eu

https://brucellino.github.io/blog/Style-Guide-In-Action

Better use of infrastructure : Ansible Galaxy

EE My Content

| Name v |Filter by Name... | | | Name v | 12 |

> %1 Owners
> @ brucellino + Add Content [

> :=1 Provider Namespaces

> §40wners
> @ EGI-Foundation + Add Content [

> '—1 Provider Namespaces

> 3 Owners
> ‘ @ sci-gaia % + Add Content [iH

> :=1 Provider Namespaces

Better use of infrastructure : Ansible Galaxy

> 4 Owners
v @ EGI-Foundation E + Add Content [

> =1 provider Namespaces

‘ Name v | Filter by Name...

¢- ansible-packstack-role @Failed 5 months ago £ Import

a- ansible_role_ui Ansible role to deliver Us... @®Succeeded 2 months ago X Import | §

a- caso @®Succeeded 3 months ago X Import | §

a- cmd @Succeeded 3 months ago & Import

a- discourse-sso @Succeeded 3 months ago & Import | §

Better use of infrastructure : Quay

* Cl on Travis pushes to Quay on build-passing :

- artefacts immediately available for re-use in subsequent steps of the
pipeline

* Something similar could be done for VMS (push to AppDB)

* Vulnerabilities and obsolete packages immediately visibile

— Can open issues against the repo automatically

Bruce Becker | EGI Operations Team | bruce.becker@egi.eu

DevSecOps - thanks clair

€ B egi/wn ‘ 1b8ada7de317

Quay Security Scanner has detected 7 vulnerabilities.

*

Patches are available for 7 vulnerabilities.

|

A 5 High-level vulnerabilities.
2 Medium-level vulnerabilities.

&

Vulnerabilities Filter Vulnerabilitie

CVE SEVERITY | PACKAGE CURRENT VERSION

Bruce Becker | EGI Operations Team | bruce.becker@egi.eu

Collaboration and re-usability

* Putting development into context with a solid foundation
and objective measures makes it easier for operations to
trust the results thereof.

* Both Dev and Ops can agree on the final state of the
service in given scenarios

* Clear case for following TDD and BDD using relevant
tools (TestInfra, Inspec, Cucumber)

* |[ssues in the final state can be traced back to code if there
is an unbroken pipeline between commit and deploy.

Bruce Becker | EGI Operations Team | bruce.becker@egi.eu

DevOps

For us to achieve DevOps and support many more deployment
scenarios -

Small sites with few staff, in known scenarios

Unmanned deployments

Different deployment platforms

e ...we need product teams and infrastructure engineers to collaborate ...

Peer review, pull requests, infrastructure specs, documentation

... hot on the code of the product itself, but the pipeline for delivering
that product in a viable state to the production environment

Close links with the ‘lightweght’ sites work from CERN and SKA HPC
ecosystem sites in Africa.

Bruce Becker | EGI Operations Team | bruce.becker@egi.eu

In summary:

UMD configurations should be put through the same rigourous
testing as UMD products

 Having more than one tool to achieve production states is
good, as long as there is a community of practice in EGI around
those tools

* A community of practice is expressed in the EGI Ansible Style
Guide, along with a compliance profile.

* Allows those wanting to
- develop infrastructure components to do so smoothly and collaboratively

- Operate infrastructure components to do so with confidence

Bruce Becker | EGI Operations Team | bruce.becker@egi.eu

links

Style Guide, Compliance profile, Quay Org, Ansible Galaxy

Website - egi-foundation.github.io/ansible-style-guide

Testing tools

— Molecule : molecule.readthedocs.io
- TestInfra : testinfra.readthedocs.io
— Inspec : www.inspec.io

— Cucumber : cucumber.io

Blogs :
- ‘E-Infrastructure Components that are built to last’

- ‘Style Guide in Action’

https://github.com/EGI-Foundation/ansible-style-guide
https://github.com/EGI-Foundation/Ansible-Fashion-Police
https://quay.io/organization/egi
https://galaxy.ansible.com/EGI-Foundation/
https://egi-foundation.github.io/ansible-style-guide
http://molecule.readthedocs.io/
https://testinfra.readthedocs.io/
http://www.inspec.io/
https://cucumber.io/
https://brucellino.github.io/blog/Ansible-Style-Guide
https://brucellino.github.io/blog/Style-Guide-In-Action

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

