EGI-InSPIRE

MPI and Parallel Code Support

Alessandro Costantini, Isabel Campos, Enol Fernández, Antonio
Laganà, John Walsh

Core Objectives

- Improved end-user documentation, addressing MPI application development and job submission in ARC, gLite and UNICORE
- Feedback from User community, NGI and site
- Outreach and dissemination at EGI events and workshops
- Participation in selected standardisation activity and task force

MPI Application / Libraries

- Most Common Application / Libraries ported
- DL_POLY
- NAMD
- VENUS96
- GROMACS
- GAMESS
- MUFTE
- mpiBLAST
- Easy compilation in UI (may be problems for local compilation in WN)

MPI Status

- 119 clusters publish MPI-START tag
- Very little change since last year
- However, big change in reliability!
- Sites now tested every hour via SAM (NAGIOS)
- NGIs/Sites must follow-up on MPI failures

Compchem VO performed wide scale testing

- Uses UNIPG production codes of DL_POLY
- 16 sites of 25 support both CompChem and MPI
- Tested sequentially on one node, then parallel on 2, 4, 8, 16, 32, 64 nodes
Compiled using IFC, MPICH (static compiled on the UI)

Performances over the Grid

- SAM-MPI tests enabled
- Parallel applications run properly on 12 sites up to 16 CPUs

Success rates and issues

2 to 8 Cores

Job Status (Percent)	2009	2010	2011
Successful	53	75	80
Unsuccessful	47	25	20
Unsuccessful	2009	2010	2011
Aborted by CE	52	0	80
Scheduler Error	39	100	20
MPI-START	9	0	

16 to 64 Cores

Job Status (Percent)	2009	2010	2011
Successful	21	54	62
Unsuccessful	79	46	38
Unsuccessful	2009	2010	2011
Aborted by CE	73	0	50
Scheduler Error	23	93	0
Proxy Expired	4	7	50

- Clearly a need to isolate outstanding issues!

OpenMP/User defined allocation support

- New M/W features requested by users
- OpenMP support added to MPI-START
- User defined allocation of processes/node (SMP tag)
- OpenMP advantages
- Most sites now use >= 4 cores per machine
- OpenMP is lightweight, easy to use, fast
- Accounting issues being investigated
- EGI Accounting Workshop (EGI-TF 2011)
- Expected release in UMD 1.3

GP-GPU support

- CUDA/OpenCL has a steep learning curve
- High-end units offer ECC/better precision
- Especially double precision calculations
- Large scale growth at HPC centres
- HPC Top 500
- Increasing number of Applications
- Across all scientific domains

GP-GPU support

- GP-GPU resource schedulers
- Basic support in Torque 2.5.4
- No support in MAUI (MOAB yes)
- SLURM supports GPGPU resources

Problems using GP-GPU

- OpenMPI (CUDA support must be explicitly configured)
- All user a/c have R/W access to resource
- Most nodes now MultiCore
- Multiple job slots per physical machine
- Distinct pool a/c may access same GP-GPU
- User code needs guaranteed exclusive access

Current GPU Scheduling Solutions

- Innovative mixed Grid/Cloud approach
- Need Grid standardisation (\#GPU cores, tags...)
- Exploits new features in:
- WMS + H/W virtualization + PCI pass-through of GPU to VM
- Compchem \& Theophys VOs

Conclusions

- SAM-MPI tests solve usual site problems
- Easier to detect source of failure
- MPI now more reliable for large jobs
- Waiting times at sites can be prohibitive
- Works best when as many free nodes at site as job size.
- Need wider deployment of UMD WMS 3.3
- Improved generic parallel job support
- Exciting time ahead with GP-GPU/Virtualisation

