

MPI and Parallel Code Support

Alessandro Costantini,

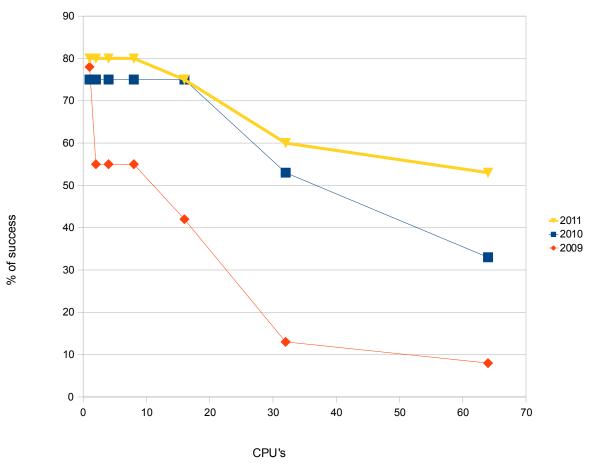
Isabel Campos, Enol Fernández, Antonio Laganà, John Walsh

Core Objectives

- Improved end-user documentation, addressing MPI application development and job submission in ARC, gLite and UNICORE
- Feedback from User community, NGI and site
- Outreach and dissemination at EGI events and workshops
- Participation in selected standardisation activity and task force

MPI Application / Libraries

- Most Common Application / Libraries ported
 - DL_POLY
 - NAMD
 - VENUS96
 - GROMACS
 - GAMESS
 - MUFTE
 - mpiBLAST
- Easy compilation in UI (may be problems for local compilation in WN)



MPI Status

- 119 clusters publish MPI-START tag
 - Very little change since last year
 - However, big change in reliability!
 - Sites now tested every hour via SAM (NAGIOS)
 - NGIs/Sites must follow-up on MPI failures
- Compchem VO performed wide scale testing
 - Uses UNIPG production codes of DL_POLY
 - 16 sites of 25 support both CompChem and MPI
 - Tested sequentially on one node, then parallel on 2, 4, 8, 16, 32, 64 nodes
 - Compiled using IFC, MPICH (static compiled on the UI)

Performances over the Grid

- SAM-MPI tests enabled
- Parallel applications run properly on 12 sites up to 16 CPUs

Success rates and issues

2 to 8 Cores

4		4_	~ 4	\sim	res
1	h	TO	h4		rbe
	v	LU	UT	\mathbf{v}	. 63

Job Status (Percent)	2009	2010	2011
Successful	53	75	80
Unsuccessful	47	25	20

Job Status (Percent)	2009	2010	2011
Successful	21	54	62
Unsuccessful	79	46	38

Unsuccessful	2009	2010	2011
Aborted by CE	52	0	80
Scheduler Error	39	100	20
MPI-START	9	0	

Unsuccessful	2009	2010	2011
Aborted by CE	73	0	50
Scheduler Error	23	93	0
Proxy Expired	4	7	50

- Clearly a need to isolate outstanding issues!

OpenMP/User defined allocation support

- New M/W features requested by users
 - OpenMP support added to MPI-START
 - User defined allocation of processes/node (SMP tag)
- OpenMP advantages
 - Most sites now use >= 4 cores per machine
 - OpenMP is lightweight, easy to use, fast
- Accounting issues being investigated
 - EGI Accounting Workshop (EGI-TF 2011)
 - Expected release in UMD 1.3

GP-GPU support

- CUDA/OpenCL has a steep learning curve
 - High-end units offer ECC/better precision
 - Especially double precision calculations
- Large scale growth at HPC centres
 - HPC Top 500
- Increasing number of Applications
 - Across all scientific domains

GP-GPU support

- GP-GPU resource schedulers
 - Basic support in Torque 2.5.4
 - No support in MAUI (MOAB yes)
 - SLURM supports GPGPU resources

Problems using GP-GPU

- OpenMPI (CUDA support must be explicitly configured)
- All user a/c have R/W access to resource
 - Most nodes now MultiCore
 - Multiple job slots per physical machine
 - Distinct pool a/c may access same GP-GPU
 - User code needs guaranteed exclusive access

Current GPU Scheduling Solutions

- Innovative mixed Grid/Cloud approach
 - Need Grid standardisation (#GPU cores, tags...)
- Exploits new features in:

WMS + H/W virtualization + PCI pass-through of

GPU to VM

Compchem & Theophys VOs

Conclusions

- SAM-MPI tests solve usual site problems
 - Easier to detect source of failure
 - MPI now more reliable for large jobs
 - Waiting times at sites can be prohibitive
 - Works best when as many free nodes at site as job size.
- Need wider deployment of UMD WMS 3.3
 - Improved generic parallel job support
- Exciting time ahead with GP-GPU/Virtualisation