
SSC5 as it was seen
from a site administrator’s lair

Eygene Ryabinkin, rea@grid.kiae.ru

National Research Centre “Kurchatov Institute”

EGI Task Force, 2011, Lyon

Preface

I will just show what I had done myself in the course of handling
the SSC5 incident at our site: a 15 minute walkthrough of 1.5
days of a pure fun.

Be there any questions, corrections, suggestions or other stuff,
don’t hesitate to ask, either during the presentation or by e-mail.

Preface

I will just show what I had done myself in the course of handling
the SSC5 incident at our site: a 15 minute walkthrough of 1.5
days of a pure fun.

Be there any questions, corrections, suggestions or other stuff,
don’t hesitate to ask, either during the presentation or by e-mail.

Something weird is happening to the Grid

My daily crawl over the outgoing network connections revealed
that there are some HTTP connections to 195.140.243.4.

SSC4 had used 195.140.243.2 and it is pretty close. Let’s try to
investigate what is going on.

Something weird is happening to the Grid

My daily crawl over the outgoing network connections revealed
that there are some HTTP connections to 195.140.243.4.

SSC4 had used 195.140.243.2 and it is pretty close. Let’s try to
investigate what is going on.

Finding the worker nodes

We are running two NAT boxes for our worker nodes, so in
order to pinpoint all active connections to the suspicious IP we
should just grep the state tables:

natstate | grep 195.140.243.4
all tcp n165.lcgwn.kiae:56280 -> \
nb1-3.grid.kiae.ru:56280 -> \
195.140.243.4:80 \
ESTABLISHED:ESTABLISHED

...

OK, looks like we should look at node n165.

Finding the worker nodes

We are running two NAT boxes for our worker nodes, so in
order to pinpoint all active connections to the suspicious IP we
should just grep the state tables:

natstate | grep 195.140.243.4
all tcp n165.lcgwn.kiae:56280 -> \
nb1-3.grid.kiae.ru:56280 -> \
195.140.243.4:80 \
ESTABLISHED:ESTABLISHED

...

OK, looks like we should look at node n165.

Identifying the process at the worker node

For the live process it is simple: try to use netstat to figure out if
the connections are here. For our case, they were here:

netstat -nap | grep 195.140.243.4
tcp 0 0 10.0.16.40:43758 \
195.140.243.4:80 \
ESTABLISHED 22119/wopr_build_ce

“wopr”? Sounds familiar.

WOPR ≡ War Operation Plan Response

War Games, an American film made in 1983. And WOPR was
the main computer to simulate the atomic war:

Pretty thing, heh? Not an LHC, but still rather cool.

Do I think that this stuff is malicious?
Yes, I do (just a gut feeling).

WOPR ≡ War Operation Plan Response

War Games, an American film made in 1983. And WOPR was
the main computer to simulate the atomic war:

Pretty thing, heh? Not an LHC, but still rather cool.

Do I think that this stuff is malicious?
Yes, I do (just a gut feeling).

WOPR ≡ War Operation Plan Response

War Games, an American film made in 1983. And WOPR was
the main computer to simulate the atomic war:

Pretty thing, heh? Not an LHC, but still rather cool.

Do I think that this stuff is malicious?
Yes, I do (just a gut feeling).

Identifying the process at the worker node

Tools like ps or pstree will show you the process if it is not
hiding from us. Go grep it!

ps auxww | grep [w]opr
203001 22119 0.0 0.0 15100 2204 ? \
SN 02:35 0:00 ./wopr_build_centos64

You can also look at /proc:

ls -l /proc/22119/exe | awk ’{print $NF;}’
.../atlaspilot0002/home_cream_647987011/\
CREAM647987011/condorg_bZF21997/pilot3/\
Panda_Pilot_22026_1306276480/\
PandaJob_1240315966_1306276481/\
workDir/wopr_build_centos64

Identifying the process at the worker node

Tools like ps or pstree will show you the process if it is not
hiding from us. Go grep it!

ps auxww | grep [w]opr
203001 22119 0.0 0.0 15100 2204 ? \
SN 02:35 0:00 ./wopr_build_centos64

You can also look at /proc:

ls -l /proc/22119/exe | awk ’{print $NF;}’
.../atlaspilot0002/home_cream_647987011/\
CREAM647987011/condorg_bZF21997/pilot3/\
Panda_Pilot_22026_1306276480/\
PandaJob_1240315966_1306276481/\
workDir/wopr_build_centos64

Identifying the process at the worker node

Tools like ps or pstree will show you the process if it is not
hiding from us. Go grep it!

ps auxww | grep [w]opr
203001 22119 0.0 0.0 15100 2204 ? \
SN 02:35 0:00 ./wopr_build_centos64

You can also look at /proc:

ls -l /proc/22119/exe | awk ’{print $NF;}’
.../atlaspilot0002/home_cream_647987011/\
CREAM647987011/condorg_bZF21997/pilot3/\
Panda_Pilot_22026_1306276480/\
PandaJob_1240315966_1306276481/\
workDir/wopr_build_centos64

Next steps

What we have right now:
the binary itself;

we know that this thing looks like an ATLAS Panda job
1240315966 launched by Panda pilot 22026_1306276480.

Now our path forks:
we must analyze the job payload;
we must check the Panda stuff and try to trace the job back
to the original user.

Next steps

What we have right now:
the binary itself;
we know that this thing looks like an ATLAS Panda job
1240315966 launched by Panda pilot 22026_1306276480.

Now our path forks:
we must analyze the job payload;
we must check the Panda stuff and try to trace the job back
to the original user.

Next steps

What we have right now:
the binary itself;
we know that this thing looks like an ATLAS Panda job
1240315966 launched by Panda pilot 22026_1306276480.

Now our path forks:
we must analyze the job payload;

we must check the Panda stuff and try to trace the job back
to the original user.

Next steps

What we have right now:
the binary itself;
we know that this thing looks like an ATLAS Panda job
1240315966 launched by Panda pilot 22026_1306276480.

Now our path forks:
we must analyze the job payload;
we must check the Panda stuff and try to trace the job back
to the original user.

The Panda business

First of all, inside the directory CREAMNNNNNNNN we have two
files, 1298312.0.err and 1298312.0.out.

The latter contains the full log of the Panda job: just grep on
PBS_JOBID, 3212667.shed.grid.kiae.ru in our case.

Now you can use dig-creamce to trace the job:

dig-creamce -s -1d --trace lrmsID eq 3212667.shed.grid.kiae.ru
{’localUser’: ’203001’,
’ceID’: ’foam.grid.kiae.ru:8443/cream-pbs-atlas’,
...
’userDN’: ’/C=UK/O=eScience/OU=CLRC/L=RAL/CN=graeme andrew stewart (ssc4)’,
’jobID’: ’CREAM684854769’,
--- BEGIN JOB TRACE ---
Job: 3212667.shed.grid.kiae.ru

The Panda business

First of all, inside the directory CREAMNNNNNNNN we have two
files, 1298312.0.err and 1298312.0.out.

The latter contains the full log of the Panda job: just grep on
PBS_JOBID, 3212667.shed.grid.kiae.ru in our case.

Now you can use dig-creamce to trace the job:

dig-creamce -s -1d --trace lrmsID eq 3212667.shed.grid.kiae.ru
{’localUser’: ’203001’,
’ceID’: ’foam.grid.kiae.ru:8443/cream-pbs-atlas’,
...
’userDN’: ’/C=UK/O=eScience/OU=CLRC/L=RAL/CN=graeme andrew stewart (ssc4)’,
’jobID’: ’CREAM684854769’,
--- BEGIN JOB TRACE ---
Job: 3212667.shed.grid.kiae.ru

The Panda business

First of all, inside the directory CREAMNNNNNNNN we have two
files, 1298312.0.err and 1298312.0.out.

The latter contains the full log of the Panda job: just grep on
PBS_JOBID, 3212667.shed.grid.kiae.ru in our case.

Now you can use dig-creamce to trace the job:

dig-creamce -s -1d --trace lrmsID eq 3212667.shed.grid.kiae.ru
{’localUser’: ’203001’,
’ceID’: ’foam.grid.kiae.ru:8443/cream-pbs-atlas’,
...
’userDN’: ’/C=UK/O=eScience/OU=CLRC/L=RAL/CN=graeme andrew stewart (ssc4)’,
’jobID’: ’CREAM684854769’,
--- BEGIN JOB TRACE ---
Job: 3212667.shed.grid.kiae.ru

The Panda business

We have CREAM job ID and user DN.

The former can be used to trace the job on the CREAM CE.

But the DN comes from the pilot runner (Graeme Stewart in our
case) and not from the actual user for the payload that will be
executed by the pilot.

But we have a mighty Panda, so grepping 1298312.0.out for
“Pilot executing job for user:” will reveal the actual user:

/O=dutchgrid/O=users/O=nikhef/CN=Hegoi \
Garitaonandia (SSC5)

He even has a LinkedIn page and looks like he is from NIKHEF.

http://nl.linkedin.com/pub/hegoi-garitaonandia/7/6a1/838

The Panda business

We have CREAM job ID and user DN.

The former can be used to trace the job on the CREAM CE.

But the DN comes from the pilot runner (Graeme Stewart in our
case) and not from the actual user for the payload that will be
executed by the pilot.

But we have a mighty Panda, so grepping 1298312.0.out for
“Pilot executing job for user:” will reveal the actual user:

/O=dutchgrid/O=users/O=nikhef/CN=Hegoi \
Garitaonandia (SSC5)

He even has a LinkedIn page and looks like he is from NIKHEF.

http://nl.linkedin.com/pub/hegoi-garitaonandia/7/6a1/838

The Panda business

We have CREAM job ID and user DN.

The former can be used to trace the job on the CREAM CE.

But the DN comes from the pilot runner (Graeme Stewart in our
case) and not from the actual user for the payload that will be
executed by the pilot.

But we have a mighty Panda, so grepping 1298312.0.out for
“Pilot executing job for user:” will reveal the actual user:

/O=dutchgrid/O=users/O=nikhef/CN=Hegoi \
Garitaonandia (SSC5)

He even has a LinkedIn page and looks like he is from NIKHEF.

http://nl.linkedin.com/pub/hegoi-garitaonandia/7/6a1/838

The Panda business

We have CREAM job ID and user DN.

The former can be used to trace the job on the CREAM CE.

But the DN comes from the pilot runner (Graeme Stewart in our
case) and not from the actual user for the payload that will be
executed by the pilot.

But we have a mighty Panda, so grepping 1298312.0.out for
“Pilot executing job for user:” will reveal the actual user:

/O=dutchgrid/O=users/O=nikhef/CN=Hegoi \
Garitaonandia (SSC5)

He even has a LinkedIn page and looks like he is from NIKHEF.

http://nl.linkedin.com/pub/hegoi-garitaonandia/7/6a1/838

The Panda business

We have CREAM job ID and user DN.

The former can be used to trace the job on the CREAM CE.

But the DN comes from the pilot runner (Graeme Stewart in our
case) and not from the actual user for the payload that will be
executed by the pilot.

But we have a mighty Panda, so grepping 1298312.0.out for
“Pilot executing job for user:” will reveal the actual user:

/O=dutchgrid/O=users/O=nikhef/CN=Hegoi \
Garitaonandia (SSC5)

He even has a LinkedIn page and looks like he is from NIKHEF.

http://nl.linkedin.com/pub/hegoi-garitaonandia/7/6a1/838

The Panda business-II

Let’s look at the workDir of the job:

ROOT.py
jobO.eee190ce-0f5c-4441-9975-24cf82e6ca86.tar.gz
pakiti-ssc-client
ratatosk.sh
tmp.stderr.c1756e3f-7027-48c2-801d-326e4c5f557b
tmp.stdout.f692706c-0838-44a8-9627-284a86401cb9
wopr_build_centos64.ANALY_GLASGOW

And what’s in the .tar file:

$ tar tf jobO.eee190ce-0f5c-4441-9975-24cf82e6ca86.tar.gz
wopr_build_centos64.ANALY_GLASGOW
wopr_build_v6_debian32.ANALY_GLASGOW
ratatosk.sh
pakiti-ssc-client

The Panda business-III

We have a script named job_setup.sh in the PandaJob
directory:

<init stuff>
./runGen-00-00-02 -j "" --sourceURL https://voatlas177.cern.ch:25443 \
-p "%22ratatosk.sh%22" \
-a jobO.eee190ce-0f5c-4441-9975-24cf82e6ca86.tar.gz \
-r . --lfcHost lfc-atlas.grid.sara.nl --inputGUIDs "[]" \
1>prun_stdout.txt 2>prun_stderr.txt

Well, we should look at runGen-00-00-02, prun_stderr.txt and
prun_stdout.txt. The latter will reveal that the jobO archive will
be downloaded and the script “ratatosk.sh” will be executed.

The Panda business-III

We have a script named job_setup.sh in the PandaJob
directory:

<init stuff>
./runGen-00-00-02 -j "" --sourceURL https://voatlas177.cern.ch:25443 \
-p "%22ratatosk.sh%22" \
-a jobO.eee190ce-0f5c-4441-9975-24cf82e6ca86.tar.gz \
-r . --lfcHost lfc-atlas.grid.sara.nl --inputGUIDs "[]" \
1>prun_stdout.txt 2>prun_stderr.txt

Well, we should look at runGen-00-00-02, prun_stderr.txt and
prun_stdout.txt. The latter will reveal that the jobO archive will
be downloaded and the script “ratatosk.sh” will be executed.

Ratatosk: what’s that?

Ratatoskr is a squirrel who runs up and down
the world tree Yggdrasil to carry messages
between the unnamed eagle, perched atop
Yggdrasil, and the wyrm N’idh"oggr, who
dwells beneath one of the three roots of the
tree.

Well, this makes me believe that the payload
creators have Nordic roots.

Ratatosk: what’s that?

Ratatoskr is a squirrel who runs up and down
the world tree Yggdrasil to carry messages
between the unnamed eagle, perched atop
Yggdrasil, and the wyrm N’idh"oggr, who
dwells beneath one of the three roots of the
tree.

Well, this makes me believe that the payload
creators have Nordic roots.

The Panda business IV

Since Panda is essentially a bunch of Python and shell scripts
and it has a number of log files, you can really get a very good
overview of what’s going on by examining these files.

There are many other information items that can be obtained
from Panda directory, but I just don’t have time to show
everything.

So: don’t fear, just dig the code, correlate it with the logs and
you will be able to get an idea on what’s going on very quickly.

The Panda business IV

Since Panda is essentially a bunch of Python and shell scripts
and it has a number of log files, you can really get a very good
overview of what’s going on by examining these files.

There are many other information items that can be obtained
from Panda directory, but I just don’t have time to show
everything.

So: don’t fear, just dig the code, correlate it with the logs and
you will be able to get an idea on what’s going on very quickly.

The Panda business IV

Since Panda is essentially a bunch of Python and shell scripts
and it has a number of log files, you can really get a very good
overview of what’s going on by examining these files.

There are many other information items that can be obtained
from Panda directory, but I just don’t have time to show
everything.

So: don’t fear, just dig the code, correlate it with the logs and
you will be able to get an idea on what’s going on very quickly.

Payload analysis

First, let’s look at ratatosk.sh:

<snip>
for BIN in wopr_build_v6_debian32.ANALY_GLASGOW \
wopr_build_centos64.ANALY_GLASGOW \
pakiti-ssc-client

do
echo \"running ${BIN}\"
chmod +x ${BIN}
./${BIN}
RETVAL=$?
echo "The peace bringer exited with: $RETVAL"
#sleep 10 # allow some time to execute
rm ${BIN} # don’t make their lives too easy
done
exit 0

Payload analysis: it is all about squirrels

The contents of ratatosk.sh explain why we have no
wopr_build_v6_debian32.ANALY_GLASGOW in the job
working directory: it was already eaten by the squirrel.

In our case we have that binary handy (and we also could
download it from Panda again), but in other cases when the
binary is already removed, the forensic analysis toolkit called
The Sleuth Kit, http://www.sleuthkit.org/, can be of some help.

http://www.sleuthkit.org/

Payload analysis: Pakiti?

OK, we all know what Pakiti is. But we should not skip the
pakiti-client script from our investigations, because it has the
following lines:

SERVERS="pakiti.egi.eu:443"
SERVER_URL="/feed-ssc5/"

Guess, what will you find1 at https://pakiti.egi.eu/ssc5/? Right,
the full list of the sites and nodes that were attacked by this
particular version of the ratatosk payload for which the job was
already finished.

Such information shouldn’t be missed and once found should
communicated to the respective CERTs and other bodies.

1Given that you have a valid certificate that is authorized for that URL

https://pakiti.egi.eu/ssc5/

Payload analysis: Pakiti?

OK, we all know what Pakiti is. But we should not skip the
pakiti-client script from our investigations, because it has the
following lines:

SERVERS="pakiti.egi.eu:443"
SERVER_URL="/feed-ssc5/"

Guess, what will you find1 at https://pakiti.egi.eu/ssc5/? Right,
the full list of the sites and nodes that were attacked by this
particular version of the ratatosk payload for which the job was
already finished.

Such information shouldn’t be missed and once found should
communicated to the respective CERTs and other bodies.

1Given that you have a valid certificate that is authorized for that URL

https://pakiti.egi.eu/ssc5/

Payload analysis: WOPR, while it is still alive

If you can afford it, try to both strace the already running binary
and tcpdump its connections.

For the WOPR I immediately got the following string written to
the remote HTTP endpoint:

"7\336\215\201\206Z\366\373\305@u\177-\210\207\301\340u\vp\236\
\346I\372O\\237\33s\311\16\234\3309-09a0-4e82-a258-80a425cb1fed\", \
\"version\": 6, \"payload\": { \"hostname\": \
\"xxxxx.grid.kiae.ru\", \"network\": { \"lo\": [{ \"family\": \
\"AF_INET\", \"ip\": \"127.0.0.1\", ...

It terribly reminds JSON;
But it has 32 bytes (or 256 bits) of junk at the beginning
and UUID-like stuff just after it;
And the details about the machine, process PID and others
are written to the HTTP stream regularily, so it really looks
like a malware.

Payload analysis: WOPR, while it is still alive

If you can afford it, try to both strace the already running binary
and tcpdump its connections.
For the WOPR I immediately got the following string written to
the remote HTTP endpoint:

"7\336\215\201\206Z\366\373\305@u\177-\210\207\301\340u\vp\236\
\346I\372O\\237\33s\311\16\234\3309-09a0-4e82-a258-80a425cb1fed\", \
\"version\": 6, \"payload\": { \"hostname\": \
\"xxxxx.grid.kiae.ru\", \"network\": { \"lo\": [{ \"family\": \
\"AF_INET\", \"ip\": \"127.0.0.1\", ...

It terribly reminds JSON;
But it has 32 bytes (or 256 bits) of junk at the beginning
and UUID-like stuff just after it;
And the details about the machine, process PID and others
are written to the HTTP stream regularily, so it really looks
like a malware.

Payload analysis: WOPR, while it is still alive

If you can afford it, try to both strace the already running binary
and tcpdump its connections.
For the WOPR I immediately got the following string written to
the remote HTTP endpoint:

"7\336\215\201\206Z\366\373\305@u\177-\210\207\301\340u\vp\236\
\346I\372O\\237\33s\311\16\234\3309-09a0-4e82-a258-80a425cb1fed\", \
\"version\": 6, \"payload\": { \"hostname\": \
\"xxxxx.grid.kiae.ru\", \"network\": { \"lo\": [{ \"family\": \
\"AF_INET\", \"ip\": \"127.0.0.1\", ...

It terribly reminds JSON;

But it has 32 bytes (or 256 bits) of junk at the beginning
and UUID-like stuff just after it;
And the details about the machine, process PID and others
are written to the HTTP stream regularily, so it really looks
like a malware.

Payload analysis: WOPR, while it is still alive

If you can afford it, try to both strace the already running binary
and tcpdump its connections.
For the WOPR I immediately got the following string written to
the remote HTTP endpoint:

"7\336\215\201\206Z\366\373\305@u\177-\210\207\301\340u\vp\236\
\346I\372O\\237\33s\311\16\234\3309-09a0-4e82-a258-80a425cb1fed\", \
\"version\": 6, \"payload\": { \"hostname\": \
\"xxxxx.grid.kiae.ru\", \"network\": { \"lo\": [{ \"family\": \
\"AF_INET\", \"ip\": \"127.0.0.1\", ...

It terribly reminds JSON;
But it has 32 bytes (or 256 bits) of junk at the beginning
and UUID-like stuff just after it;

And the details about the machine, process PID and others
are written to the HTTP stream regularily, so it really looks
like a malware.

Payload analysis: WOPR, while it is still alive

If you can afford it, try to both strace the already running binary
and tcpdump its connections.
For the WOPR I immediately got the following string written to
the remote HTTP endpoint:

"7\336\215\201\206Z\366\373\305@u\177-\210\207\301\340u\vp\236\
\346I\372O\\237\33s\311\16\234\3309-09a0-4e82-a258-80a425cb1fed\", \
\"version\": 6, \"payload\": { \"hostname\": \
\"xxxxx.grid.kiae.ru\", \"network\": { \"lo\": [{ \"family\": \
\"AF_INET\", \"ip\": \"127.0.0.1\", ...

It terribly reminds JSON;
But it has 32 bytes (or 256 bits) of junk at the beginning
and UUID-like stuff just after it;
And the details about the machine, process PID and others
are written to the HTTP stream regularily, so it really looks
like a malware.

Payload analysis: WOPR, execution in a controlled environment

And let us create the tightly-controlled VM and spawn our
binary there, using strace and tcpdump from the beginning.

The results will reveal that the binary
tries to resolve the DNS name “x%x.switch.vexocide.org”
(and all names under .switch.vexocide.org are mapped to
202.254.186.190);
tries to create the file named some.random.file.move.along
in some directories; some of created files are removed, but
some are left in place, so we can use it for detection of
infected worker nodes.

Payload analysis: WOPR, execution in a controlled environment

And let us create the tightly-controlled VM and spawn our
binary there, using strace and tcpdump from the beginning.

The results will reveal that the binary
tries to resolve the DNS name “x%x.switch.vexocide.org”
(and all names under .switch.vexocide.org are mapped to
202.254.186.190);
tries to create the file named some.random.file.move.along
in some directories; some of created files are removed, but
some are left in place, so we can use it for detection of
infected worker nodes.

Payload analysis: WOPR, static analysis

First of all, let’s understand what type of binary we have.

$ file wopr_build_centos64.ANALY_GLASGOW
wopr_build_centos64.ANALY_GLASGOW:\
ELF 64-bit LSB executable,\
x86-64, version 1 (SYSV), statically linked,\
for GNU/Linux 2.6.9, not stripped

64-bit, statically linked: it was more-or-less expected;
not stripped: well, if it is really unstripped, this will make
our lives a lot easier.

Payload analysis: WOPR, static analysis

First of all, let’s understand what type of binary we have.

$ file wopr_build_centos64.ANALY_GLASGOW
wopr_build_centos64.ANALY_GLASGOW:\
ELF 64-bit LSB executable,\
x86-64, version 1 (SYSV), statically linked,\
for GNU/Linux 2.6.9, not stripped

64-bit, statically linked: it was more-or-less expected;
not stripped: well, if it is really unstripped, this will make
our lives a lot easier.

Payload analysis: WOPR, symbols

Let’s try the simple tools first:

$ nm wopr_build_centos64.ANALY_GLASGOW | grep crypt
00000000004047f0 T aes_decrypt
0000000000403720 T aes_encrypt
000000000040ba80 T evbuffer_decrypt
000000000040bb80 T evbuffer_encrypt

OK, looks like AES encryption was used for the first 32 bytes of
JSON.

Running strings over the binary shows that it uses libevent,
perhaps some library called scar_log that analyzes
environment variable SCAR_DEBUG_LEVEL, it uses json-c
and it has the string “omgwtfbbqidkfaiddqd”. Heh?

Payload analysis: WOPR, symbols

Let’s try the simple tools first:

$ nm wopr_build_centos64.ANALY_GLASGOW | grep crypt
00000000004047f0 T aes_decrypt
0000000000403720 T aes_encrypt
000000000040ba80 T evbuffer_decrypt
000000000040bb80 T evbuffer_encrypt

OK, looks like AES encryption was used for the first 32 bytes of
JSON.

Running strings over the binary shows that it uses libevent,
perhaps some library called scar_log that analyzes
environment variable SCAR_DEBUG_LEVEL, it uses json-c
and it has the string “omgwtfbbqidkfaiddqd”. Heh?

Payload analysis: WOPR, symbols

Let’s try the simple tools first:

$ nm wopr_build_centos64.ANALY_GLASGOW | grep crypt
00000000004047f0 T aes_decrypt
0000000000403720 T aes_encrypt
000000000040ba80 T evbuffer_decrypt
000000000040bb80 T evbuffer_encrypt

OK, looks like AES encryption was used for the first 32 bytes of
JSON.

Running strings over the binary shows that it uses libevent,
perhaps some library called scar_log that analyzes
environment variable SCAR_DEBUG_LEVEL, it uses json-c
and it has the string “omgwtfbbqidkfaiddqd”. Heh?

Payload analysis: OMG? WTF? BBQ! IDKFA! IDDQD!

Looks like our malware creators are sufficiently old to play...

IDKFA is a cheat code that gives all weapons, ammo and
keys;
IDDQD is a cheat code that enables god mode.

... and they like barbeque? I really need a BFG2!

2Big, uh, freakin’ gun

Payload analysis: OMG? WTF? BBQ! IDKFA! IDDQD!

Looks like our malware creators are sufficiently old to play...

IDKFA is a cheat code that gives all weapons, ammo and
keys;
IDDQD is a cheat code that enables god mode.

... and they like barbeque? I really need a BFG2!

2Big, uh, freakin’ gun

Payload analysis: OMG? WTF? BBQ! IDKFA! IDDQD!

Looks like our malware creators are sufficiently old to play...

IDKFA is a cheat code that gives all weapons, ammo and
keys;

IDDQD is a cheat code that enables god mode.

... and they like barbeque? I really need a BFG2!

2Big, uh, freakin’ gun

Payload analysis: OMG? WTF? BBQ! IDKFA! IDDQD!

Looks like our malware creators are sufficiently old to play...

IDKFA is a cheat code that gives all weapons, ammo and
keys;
IDDQD is a cheat code that enables god mode.

... and they like barbeque? I really need a BFG2!

2Big, uh, freakin’ gun

Payload analysis: OMG? WTF? BBQ! IDKFA! IDDQD!

Looks like our malware creators are sufficiently old to play...

IDKFA is a cheat code that gives all weapons, ammo and
keys;
IDDQD is a cheat code that enables god mode.

... and they like barbeque? I really need a BFG2!
2Big, uh, freakin’ gun

Payload analysis: IDA Pro

OK, let’s get down to business and use the real tool: IDA Pro.
On this binary most likely we won’t really need all scripting and
signature analysis that IDA can give us, because we already
have a full symbol table, but who knows...

IDA Pro allows us to see how that “omgwtfbbqidkfaiddqd” is
used for encryption, it allows to understand how the value for
the “%x” in switch.vexocide.org is formed: it is just the current
time().

It also permitted to write some scripts to decrypt on-the-wire
data and thus to check that we were right in the protocol
reconstruction.

And also I had determined how “at” and “cron” were used to
inject the periodic scripts.

Payload analysis: IDA Pro

OK, let’s get down to business and use the real tool: IDA Pro.
On this binary most likely we won’t really need all scripting and
signature analysis that IDA can give us, because we already
have a full symbol table, but who knows...

IDA Pro allows us to see how that “omgwtfbbqidkfaiddqd” is
used for encryption, it allows to understand how the value for
the “%x” in switch.vexocide.org is formed: it is just the current
time().

It also permitted to write some scripts to decrypt on-the-wire
data and thus to check that we were right in the protocol
reconstruction.

And also I had determined how “at” and “cron” were used to
inject the periodic scripts.

Payload analysis: IDA Pro

OK, let’s get down to business and use the real tool: IDA Pro.
On this binary most likely we won’t really need all scripting and
signature analysis that IDA can give us, because we already
have a full symbol table, but who knows...

IDA Pro allows us to see how that “omgwtfbbqidkfaiddqd” is
used for encryption, it allows to understand how the value for
the “%x” in switch.vexocide.org is formed: it is just the current
time().

It also permitted to write some scripts to decrypt on-the-wire
data and thus to check that we were right in the protocol
reconstruction.

And also I had determined how “at” and “cron” were used to
inject the periodic scripts.

Payload analysis: IDA Pro

OK, let’s get down to business and use the real tool: IDA Pro.
On this binary most likely we won’t really need all scripting and
signature analysis that IDA can give us, because we already
have a full symbol table, but who knows...

IDA Pro allows us to see how that “omgwtfbbqidkfaiddqd” is
used for encryption, it allows to understand how the value for
the “%x” in switch.vexocide.org is formed: it is just the current
time().

It also permitted to write some scripts to decrypt on-the-wire
data and thus to check that we were right in the protocol
reconstruction.

And also I had determined how “at” and “cron” were used to
inject the periodic scripts.

Payload analysis: IDA Pro

...and a whole of other stuff. For example, the rough code flow
of the binary:

do the anti-debugging tricks (no-op for 64-bits);

spit "WE COME IN PEACE" banner (only for i386);

add nameservers to libevent: 8.8.8.8 and 8.8.8.4;

setup expire_callback() with the expiration time of 14 days, the
program will die in two weeks

then it setups persistent event resolve_dispatch() that runs each
minute and resolves the DNS name x%x.switch.vexocide.org,
with %x’s value being time();

then it connects to 195.140.243.4, port 80;

(only some malware versions) if the previous connection fails, it
connects to 192.187.16.160; on other malware it just tries to
connect to 195.140.243.4 for the second time;

...

Payload analysis: IDA Pro

...and a whole of other stuff. For example, the rough code flow
of the binary:

do the anti-debugging tricks (no-op for 64-bits);

spit "WE COME IN PEACE" banner (only for i386);

add nameservers to libevent: 8.8.8.8 and 8.8.8.4;

setup expire_callback() with the expiration time of 14 days, the
program will die in two weeks

then it setups persistent event resolve_dispatch() that runs each
minute and resolves the DNS name x%x.switch.vexocide.org,
with %x’s value being time();

then it connects to 195.140.243.4, port 80;

(only some malware versions) if the previous connection fails, it
connects to 192.187.16.160; on other malware it just tries to
connect to 195.140.243.4 for the second time;

...

War games: preparations

And crawling over the assembler code also allows us to
understand that the return codes from the library functions are
not really checked. So...

Most likely, the server was written by the same author as the
client, thus return values are not very well checked too. And we
have JSON: the language that has the strict structure.

And it smells like author is relying on the fact that the incoming
string will always be larger than 32 bytes.

Let’s try to test this WOPR!

War games: preparations

And crawling over the assembler code also allows us to
understand that the return codes from the library functions are
not really checked. So...

Most likely, the server was written by the same author as the
client, thus return values are not very well checked too. And we
have JSON: the language that has the strict structure.

And it smells like author is relying on the fact that the incoming
string will always be larger than 32 bytes.

Let’s try to test this WOPR!

War games: preparations

And crawling over the assembler code also allows us to
understand that the return codes from the library functions are
not really checked. So...

Most likely, the server was written by the same author as the
client, thus return values are not very well checked too. And we
have JSON: the language that has the strict structure.

And it smells like author is relying on the fact that the incoming
string will always be larger than 32 bytes.

Let’s try to test this WOPR!

War games: preparations

And crawling over the assembler code also allows us to
understand that the return codes from the library functions are
not really checked. So...

Most likely, the server was written by the same author as the
client, thus return values are not very well checked too. And we
have JSON: the language that has the strict structure.

And it smells like author is relying on the fact that the incoming
string will always be larger than 32 bytes.

Let’s try to test this WOPR!

War games: tearing down C&C controller

#!/bin/sh
#
By Eygene Ryabinkin, 2011.
Tears down SSC 5 malware controller.
JSON parsing sucks! ;))

if [-z "$1"]; then
MASTER="195.140.243.4"

else
MASTER="$1"

curl -d ’{’ http://"$MASTER"/polling

And I’ll tell ya what: it really worked!

War games: tearing down C&C controller

#!/bin/sh
#
By Eygene Ryabinkin, 2011.
Tears down SSC 5 malware controller.
JSON parsing sucks! ;))

if [-z "$1"]; then
MASTER="195.140.243.4"

else
MASTER="$1"

curl -d ’{’ http://"$MASTER"/polling

And I’ll tell ya what: it really worked!

The end

The end?

Nope, it is only the beginning.

Sven and Oscar promised to create something funny next time.

There are some attacks on the grid sites, possibly mine and
yours.

So, let’s get our hands dirty on this stuff, hack the good tools,
polish our procedures and informational channels and be
prepared for the worst.

Thanks for your time!

The end

The end?

Nope, it is only the beginning.

Sven and Oscar promised to create something funny next time.

There are some attacks on the grid sites, possibly mine and
yours.

So, let’s get our hands dirty on this stuff, hack the good tools,
polish our procedures and informational channels and be
prepared for the worst.

Thanks for your time!

The end

The end?

Nope, it is only the beginning.

Sven and Oscar promised to create something funny next time.

There are some attacks on the grid sites, possibly mine and
yours.

So, let’s get our hands dirty on this stuff, hack the good tools,
polish our procedures and informational channels and be
prepared for the worst.

Thanks for your time!

The end

The end?

Nope, it is only the beginning.

Sven and Oscar promised to create something funny next time.

There are some attacks on the grid sites, possibly mine and
yours.

So, let’s get our hands dirty on this stuff, hack the good tools,
polish our procedures and informational channels and be
prepared for the worst.

Thanks for your time!

The end

The end?

Nope, it is only the beginning.

Sven and Oscar promised to create something funny next time.

There are some attacks on the grid sites, possibly mine and
yours.

So, let’s get our hands dirty on this stuff, hack the good tools,
polish our procedures and informational channels and be
prepared for the worst.

Thanks for your time!

The end

The end?

Nope, it is only the beginning.

Sven and Oscar promised to create something funny next time.

There are some attacks on the grid sites, possibly mine and
yours.

So, let’s get our hands dirty on this stuff, hack the good tools,
polish our procedures and informational channels and be
prepared for the worst.

Thanks for your time!

