

PIC: Experience and Plans

EGI TF, Lyon, 21st September 2011

G. Merino, PIC/CIEMAT merino@pic.es

Port d'Informació Científica

PIC is a scientific-technological centre supporting research groups that need to analise large data sets in collaborative environments.

Tier1 centre for the LHC data processing.

Data processing services for several disciplines:

- HEP
- Astrophysics
- Cosmology
- Life Sciences

Support to multiple disciplines is in PIC's mandate.

Goal: technology transfer from the LHC Tier1 to other applications with similar needs.

High Energy Physics

LHC:

- Tier1 for ATLAS, CMS and LHCb.
- Tier2 and Tier3 for ATLAS.

T2K: Long baseline neutrino oscillation experiment.

 Tier2 hosting replicas of raw files for distributed processing and a subset of MC.

Astrophysics

MAGIC: Gamma ray telescopes located in La Palma.

- PIC acts as the reference Data Center (Tier0).
- Analysis facility for the whole collaboration.

CTA: Array of gamma ray telescopes (preparatory phase 2010-2013).

- Grid center for MC production.
- Operation of DIRAC workflow manager servers.

Cosmology

PAU: Sky survey to study cosmological parameters (dark energy).

- Storage of the data.
- Development of some of the data processing tools and the objects catalog.

MICE: Largest cosmological dark matter simulations to date.

- Generated in supercomputers.
- Transferred to PIC for further analysis.

EUCLID: ESA mission due to start in 2018.

- PIC is the Spanish Scientific Data Center.
- Simulations work to start in 2012.

Life Sciences

Medical Imaging:

- Collaboration with various local Hospitals to support research in neurodegenerative and psychiatric deseases.
 - Support on MRI data management, processing and analysis through portalised services.
- Pilot project: Simulations for development and validation of new generation Positron-Emission-Tomography (PET) scanner (European Research Council advanced grant).

Genomics:

 Pilot project for remote archive of genome sequencing data.

Resource Sharing: CPU

CPU considered as a "volatile" resource.

VOs want to be able to reach their share in reasonable time (hrs).

Fair share targets set according to funding.

• 90% of resources from LHC.

Load not uniform: room for opportunistic usage of the CPU.

Storage Services

PIC specialises in Mass Storage Services. Several years experience with dCache.

Adapt workflows of non-LHC VOs requiring lots of storage to be able to use dCache: Astrophysics, Cosmology, Genomics.

Benefit from a scalable, robust service.

~3% NFS: users requiring POSIX access. Few TB volumes.

Enstore (from FermiLab) used for tape.

- Good integration with dCache.
- All Tape Storage via the dCache/Enstore stack.

Multi-VO Challenges: OPS

Large part of resources LHC Tier1 => 24x7 operations (on-call shifts)

- Limited manpower (technical group ~ 10 FTE) => Lots of effort put in monitoring and resilience.
- Aim: Encourage non-LHC VOs to adopt WLCG services to benefit from economies of scale.
 - :-) Profit from high quality services.
 - :- Often needs adaptation.

Some non-LHC VOs using some Grid services. Our experience is that they are not that fans of operational tools.

- GGUS: Get 10-15 GGUS/month for the LHC. Only got 1 from T2K and 0 from Magic (using local ticketing system).
- GOCDB: Very useful to communicate SD to VOs. Used only by LHC. Need classic e-mail communication with Magic for instance.

Middleware

Grid services at PIC: gLite stack deployed (EGEE/WLCG site)

Aim: try to use gLite tools to address needs, whenever possible.

MICE: Use FTS/scp custom deployed channel to transfer cosmology simulation data from Mare Nostrum supercomputer to PIC (http://bit.ly/pldMaE).

MAGIC: Use FTS/SRM to implement the data transfer from the telescopes to the Tier0 (http://bit.ly/oZw293).

PAU: Data processing pipeline using WMS/DAG (http://bit.ly/rh0UK8).

FTS/SRM usage also planned for Telescope-Tier0 data transfer.

Genomics: Remote Tape Archive for sequencing data.

 Use SRM/dCache/Enstore to let the data manager remotely trigger pre-stages from tape previous to massive data recalls.

Middleware

Reliability of Grid m/w has improved a lot with the years. Most important for us is that basic services are rock solid.

- Good building blocks for a distributed HTC infrastructure.
- Customization falls on the side of the VO or 3rd party (pilot or data transfer frameworks, etc).

Multi-VO sites can also help in fostering the adoption of VO-developed m/w by other disciplines.

- DIRAC: Grid framework developed in the context of LHCb, but exportable to other user communities.
 - CTA currently using DIRAC server at PIC to manage MC production on the Grid.

Portals

Medical Imaging:

- PIC provides support in:
 - Storage and management of MRI data.
 - Fast processing of lots of images.
 - Statistical analysis of results.
- Does this through a portal (PIC Neuroimaging Center).

PICNIC NeuroIntegin

MAGIC Telescope:

Web portals used for SE and Catalog browsing.

Look Ahead

Long term sustainability implies adopting standards and improving the ease of use for services.

This is one of the axes for the cloud computing movement.

Computing: Adapt current computing (CE/batch) services to offer cloud interfaces: private/academic cloud initiatives.

Storage: Follow the dCache track: invest in testing/prototyping services making use of NFS 4.1, http as data access protocol, etc.

Database: Cosmology projects are becoming users of large DBs. Current implementation at PIC on Relational DB - explore NoSQL technologies.

Sustainability?

Large part of the workload goes to small fraction of large sites (50% done in 16/325 sites).

Large part of the operational effort may be goes to small sites.

Summary

Today, production quality Grids are a reality.

From long experience from EDG/EGEE/EGI we learned:

Sustainability: Focus on deploying basic & reliable building blocks.

- Services: CE, SE, FTS, (WMS, LFC)
- Operations: Monitoring, Tickets, Resources & Sched. Downtimes DB, AuthN/AuthZ, Accounting (extend to storage)

Custom services will spawn from the different UC

- E.g. workload (pilot job) frameworks, CernVM-FS, etc.
- Effort on disseminating them for multi-VO adoption. Multi-discipline large centres can play a role here.

Common situation at several of the large Resource Centres. A coordinated action could help in focusing goals and getting results.

Thank You

G. Merino, merino@pic.es