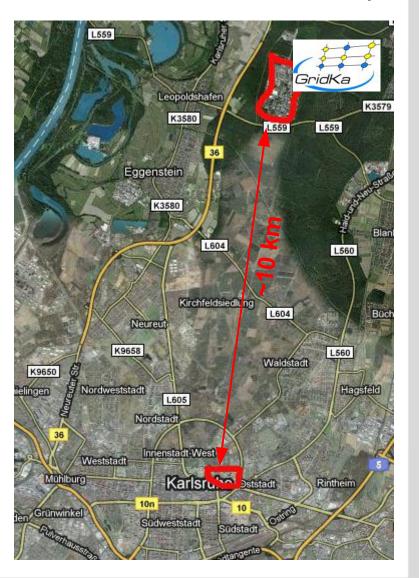
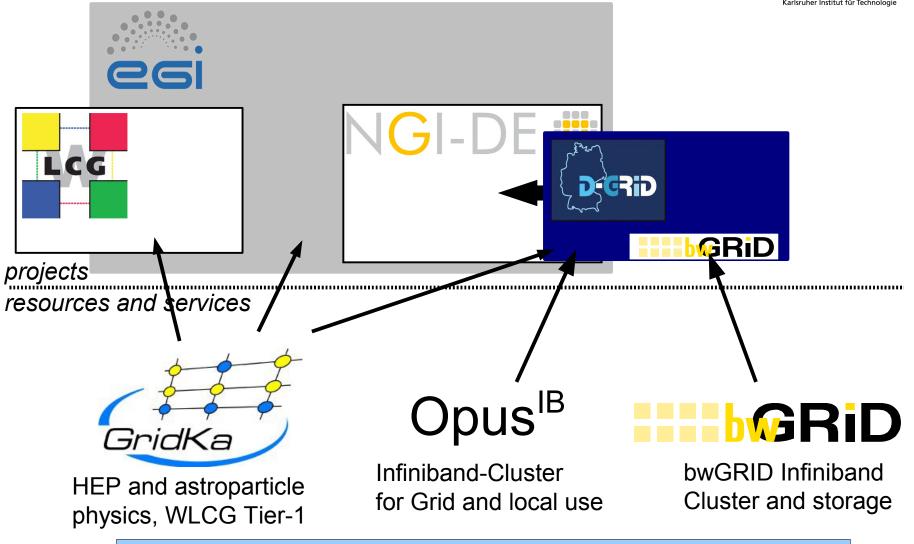


Grid resources and services for multiple science disciplines at KIT

Resource Centre Forum @ EGI Technical Forum Lyon, 2011


Steinbuch Centre for Computing Dr. Andreas Heiss

GridKa, SCC and KIT FZK, IWR


- Steinbuch Centre for Computing (SCC): the merger of the former Institute for Scientific Computing of the Research Centre Karlsruhe and the compute centre of the University of Karlsruhe.
- GridKa is the regional centre for high energy and astroparticle physics computing, currently supporting 10 international collaborations including the four LHC experiments.
- GridKa is operated by SCC

Grid projects and user communities

Access via gLite, Globus Toolkit 4 and Unicore

bwGRID partners

Baden-Württemberg

Bundesministerium für Bildung und Forschung

Karlsruhe Institute of Technology

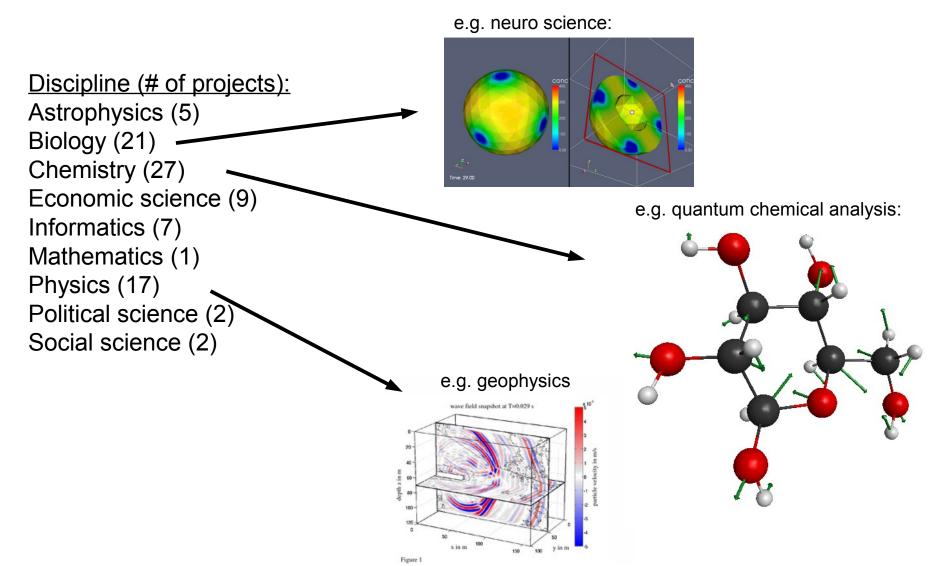
ulm university universität

Universität Stuttgart

VERSITÄT MANNHEIM

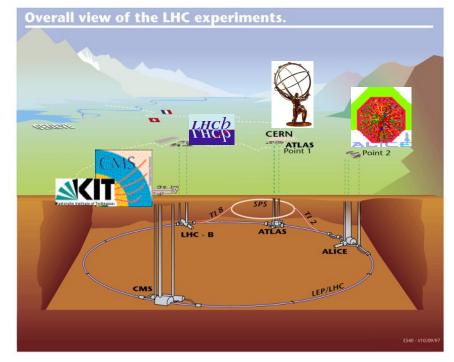
RUPRECHT-KARLS-UNIVERSITÄT HEIDELBERG

EBERHARD KARLS UNIVERSITÄT Tübingen



Hochschule Esslingen University of Applied Sciences

bwGRID users



GridKa today: resources and services for HEP and Astroparticle physics

Started in 2002

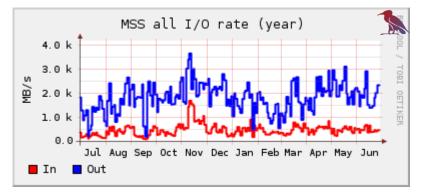
- GridKa serves all 4 of the LHC experiments as a 'Tier-1' centre.
- GridKa supported non-LHC experiments:

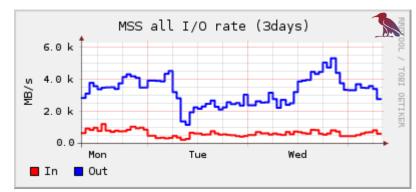
6

GridKa today

- 1270 compute nodes (13700 CPU cores, 107 kHEPSPEC'06)
- 240 file and database servers (dCache, xrootd, 3D DBs, gridftp, NFS, ...)
- ~90 servers for (Grid) services
- 12 VO boxes and login machines
- ~60 infrastructure servers (monitoring, installataion and configuration management, ...)

GridKa today




High I/O hierarchical storage systems

dCache (4 instances)

- 6500 TB disk
- ~ 2 GB/s yearly average read rate
- ~ 500 MB/s yealy av. write
- peaks of >6 GB/s
- > 60 PB of data read last year
- xrootd (2 instances)
 - 2700 TB disk
 - ~ 500 MB/s yearly average I/O
 - peaks > 1GB/s
 - 3 tape libs, > 25000 slots

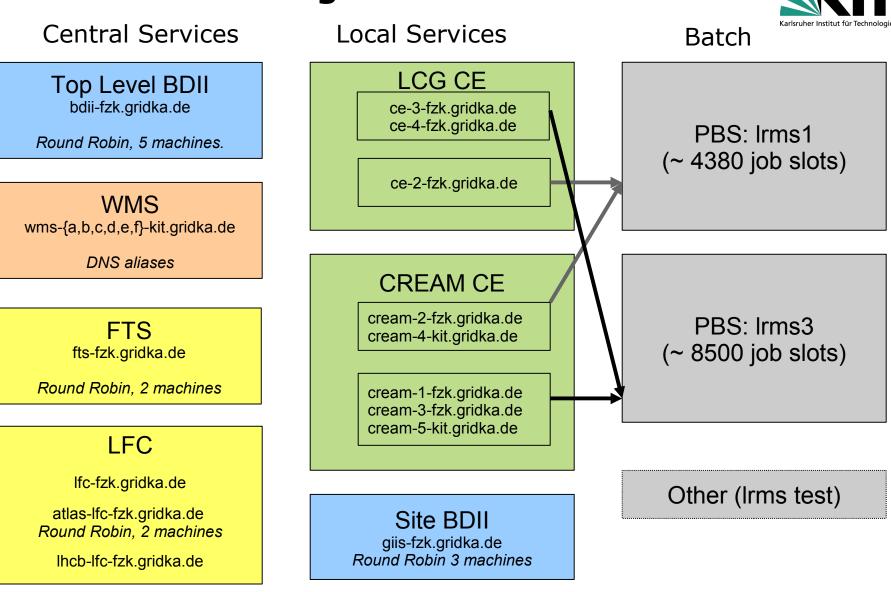
CPU usage per VO [CPU h]

Astro physics HEP Astro particle physics

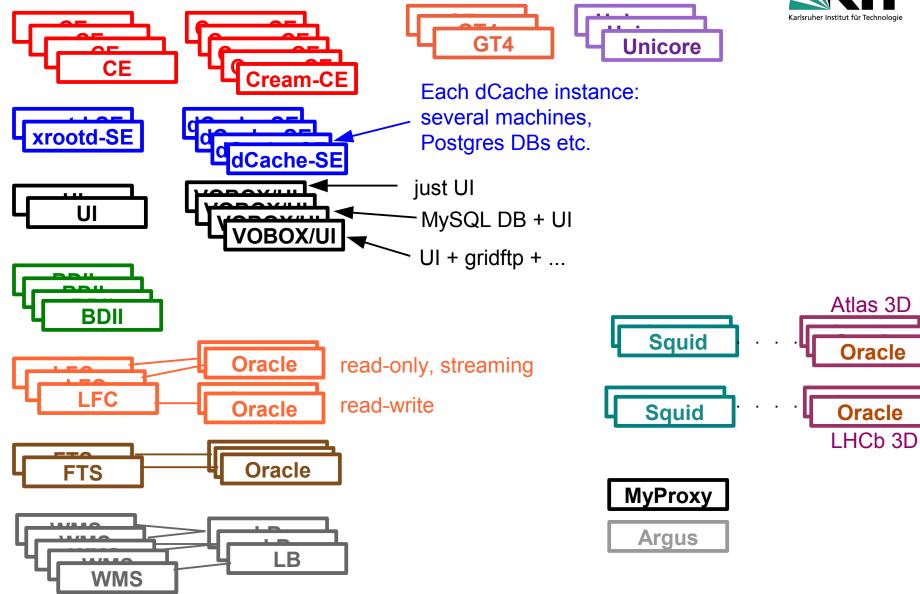
D-Grid VOs	Kürzel	Januar	Februar		-	Mai	Juni	Total
AeroGrid	ae	(4 4	/ O	0	-	0	
AstroGrid-D	ad	218745		1	281	530		255297
BauVOGrid	ba	0	-	-	0	-		_
BioInterfaces	if	0	-	-	0	-	-	0
BisGrid	bi	(-	-	0	-		0
Biz2Grid	bz	(-	-	0	-		0
BWGrid	bw	(-	-	24	0		
C3Grid	c3	() () 0	0	0	0	0
dgoms	cm	11874	42304	19701	5088	68918	87812	235696
dgops	ор	(0		0	0
dgsi	si	0) () 0	0	0	0	0
dgtest	dt	0) () 0	0	0	0	0
Education	ed	() () 0	0	0	0	0
FinGrid	fi	0) () 0	0	0	0	0
GapSLC	gs	() () 0	0	0	0	0
GDIGrid	gd	0) () 0	0	0	0	0
HEPCG	hp	0			0		0	0
InGrid	lin				Ō			0
InterLogGrid	il	0			0			0
Kern-D-Grid	kg				 0			0
Lifescience	ls			-	0		-	0
MediaGrid	mg				0			0
MediGrid	md	(-	0		-	0
				-				
MosGrid	ms			-	0		-	0
m3hpc	mh	(0			0
OptiNum	on	0		-	0	-	-	
PartnerGrid	ра	0			0		-	0
PneumoGrid	pn	0		-	0		-	0
PTGrid	pt	0) () 0	0	0	0	0
ProGrid	pr	0			0		0	0
SoftComp	sc	() () 0	0	0	0	0
TextGrid	t×	() () 0	0	0	0	0
ValueGrids	va	0) () 0	0	0	0	0
Viola	vi	() () 0	0	0	0	0
Wisent	ws	() (0	0	0	0
VOs außerhalb D-Grid		1266149	4925346	5831233	6117705	6219152	5424913	29784461
Alice		195048			1046136	268292	869939	4468501
Atlas		512690			2673561	3162570		13129439
Babar		45067			58573	16019		274356
CDF		18735			1	2107		78611
CMS		171325			595238	601038		2741744
Compass		4214			36259	92925		2741744 292507
		76478			193454	359601	185729	292007
Dzero LhcB		58090			193454	1151195		1243153 5009570
auger		168518			431617	354152		2131089
pelle		45045			30			282216
datlas		15945	1		9399	15423	1	133275
dech		0	-	-	1	0		44
dteam		2	· · · · ·		5			
enmr		0			0			0
ops	1	35	i 49	52	95	0	51	282

GridKa and OpusIB usage

	VO	Kürzel	# jobs	CPU-h	# jobs	CPU-h
D-Grid	AstroGrid-D	ad	2.338	51.200	225.354	255.297
	bwGRiD	bw	66	50	80	24
	dgtest	dt	4.586	35	2.276	0?
	Education	kg	24	0	1	0?
	Kern-D-Grid	kg	259	14	174	0?
	MediGrid	md	24.329	2.978		
andere	Euforia		91	1		
	gEclipse		4	0		
		sIB	GridKa			


Different types of user communities

The less demanding


- uses no or almost no storage
- Iow I/O jobs (e.g. Monte Carlo only)
- managed job submission (no e.g. user analysis)
- has low expectations on short-term availability of job slots, data and services
- Not much efforts or special services necessary
- Power user communities'
 - uses Grid mainly as a <u>data</u> Grid
 - complex data management
 - high I/O jobs
 - disk + tape
 - high expectations on availability of services and data
 - mix of different job types, also user analysis

GridKa Services: gLite

Grid Services

Storage systems

dCache is our workhorse for high-I/O capable storage

- Easy setup for small user communities with low I/O requirements
- Setup for 'power user communities' needs good planning and detailed knowledge about the computing model and access patterns, required storage classes etc.
 - collaboration with experiments' computing people essential
- Very stable system (if setup is well planned)
- New protocols (NFS4.1) at the horizon.
 - More versatile, suitable for other use cases

Current and medium-term challenges

- Changing computing models of the LHC communities
 - e.g. dropping of the Monarc model
 - A chance to move to more common services and tools!
 - WLCG TWGs!
- New and evolving technologies, e.g.
 - SSDs
 - no more development of magnetic disc technology!
 - will prices per TB continue to fall like in the last years?
 - SSDs enable new storage and DB applications
 - physicists will want it
 - Many-core CPUs
 - Virtualization and Cloud
 - common solution at large sites?

Requirements for the support of multiple disciplines

- Reliable and scalable basic Grid services
- Common computing models and services
 - As little as possible VO specific services
 - Use of Grid as a system of distributed redundant services (where possible), not distributed single point of failures
- Common support and collaboration tools
 - e.g. GGUS, GOCDB etc.

=> As many commonalities as possible for basic services and tools!

- Support of new user communities is on the roadmap of SCC
 - make use of experiences made with LHC experiments
 - reuse well known and stable services (gLite, dCache) as building blocks
 - Close collaboration between site people and (computing) people from the user communities.
 - Collaboration between sites to exchange technology and experiences would be beneficial.

Thank you!

Questions?