

Ganga and DIANE User Tools for EGI Applications

Dan van der Ster, CERN IT-ES EGI Technical Forum 2010 16 September 2010

9/16/2010 EGI-InSPIRE RI-261323 Ganga and DIANE – D. van der Ster

ı www.egi.eu

Overview

- Motivation for Application Tools
- Ganga and DIANE: Overview of these tools and recent developments
- Example users: heavy and small user communities
- How to get started...

How to Enable the Grid Application Builders and End-users?

- The Grid fabric can be large and complex
- We have a stable and mature middleware, but taking full advantage of it can require specialized knowledge
- We therefore have a need for tools to enable both end-users and application builders
- This talk is about two such tools from the EGEE RESPECT programme: Ganga and DIANE

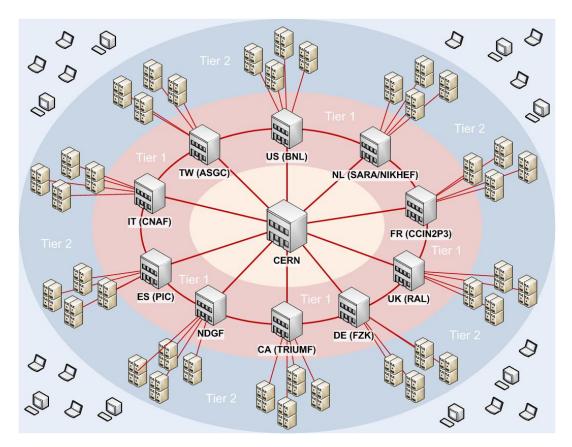


Figure: Structure of the ATLAS Grid Resources

Motivation for a Grid Front-end

- Users want:
 - Development on the laptop; full analysis on "The Grid[™]".
 - To get results quickly, utilizing all of the resources available, wherever they are.
 - A familiar and consistent user interface to all of the resources.
- Users don't want:
 - To know the details of the grids or the resources.
 - To learn yet another tool in order to access some resources
 - To have to reconfigure their application to run on different resources.

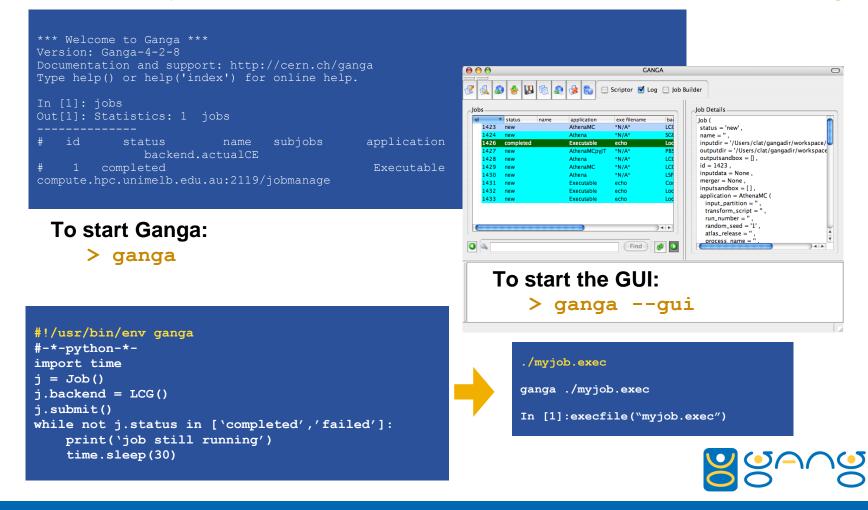
"configure once, run anywhere"

9/16/2010 EGI-InSPIRE RI-261323 Ganga and DIANE – D. van der Ster

4 www.egi.eu

Introduction to Ganga

 Ganga is a job management tool for end-users



- Run locally, on batch, and on The Grid.
- Job mgmt: Repository, Template, Copy, Retry, Kill
- Ganga is a powerful tool for developing Grid Applications
 - Python API exposes all Ganga functionality
 - Plugin architecture to add new applications, backends, or generic features
- Ganga is used actively in by the heavy users LHCb and ATLAS and by other VOs
 - Experiment-specific plugins are included.
- Ganga is an open source community-driven project:
 - Core development is joint between the heavy users
 - Mature and stable, with an organized development process
 - Developer community meets regularly: upcoming developer days in Munich later this month.

Ganga User Interfaces

Choose your own interface: CLI, GUI, or Scripting.

Ganga Job Management

What's in a Ganga Job?

Run the default job locally:

Job().submit()

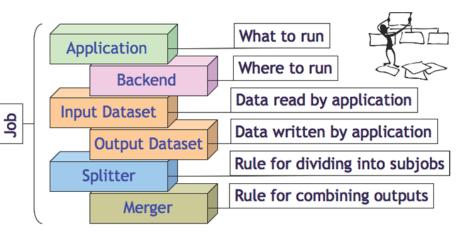
Default job on the EGEE grid:

Job(backend=LCG()).submit()

Listing of the existing jobs:

jobs

Get help (e.g. on a job):


help(jobs)

Display the nth job:

jobs(n)

Job splitting

j=Job(splitter=ArgSplitter([[str(i)] for i in xrange(10)])).submit()

Copy and resubmit the nth job: jobs(n).copy().submit() Copy and submit to another grid: j=jobs(n).copy() j.backend=DIRAC() j.submit() Kill and remove the nth job:

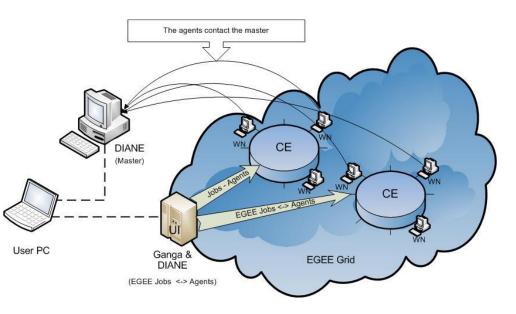
job(n).kill()
job(n).remove()

9/16/2010 EGI-InSPIRE RI-261323

Recent Ganga Developments

- High performance job repository
 - Lazy loading for fast startup time
 - XML files to improved reliability and error recovery
- New Monitoring plugins
 - ActiveMQ-based monitoring plugins for general job monitoring and for experiment plugins (e.g. ATLAS)
- Error Reporting Tool
 - Interactive command to send a job error report to a user support team
 - Bundles job and environment info and uploads to a secure server

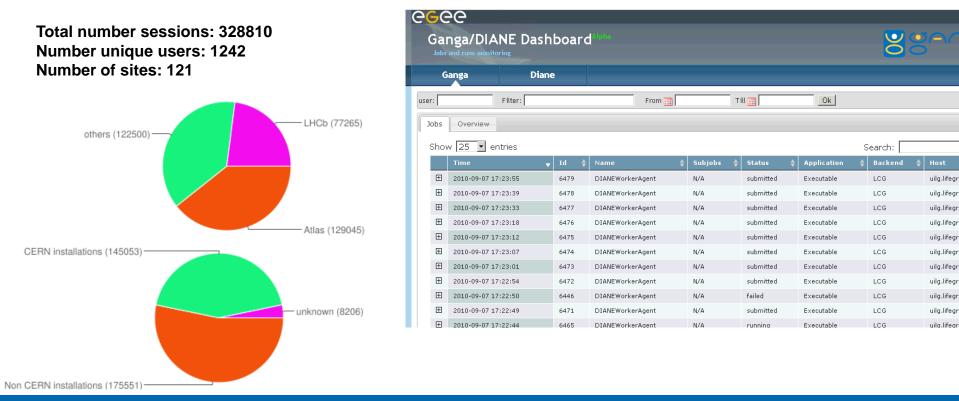
DIANE Overview


- DIANE is a framework for efficient control and scheduling of computations on a set of distributed worker nodes. It allows users to:
 - reduce the application execution time by using the resources more efficiently,
 - reduce the user work overhead by providing fully automatic execution and failure management,
 - efficiently integrate local and Grid resources.
- DIANE improves the reliability and efficiency of job execution by providing automatic load balancing, fine-grained scheduling and failure recovery.
- Project Leader: Jakub Moscicki Web: <u>http://cern.ch/DIANE</u>

DIANE Overview cont'd

Odiane

- DIANE operates at the user-level via a master and worker agents:
 - Master hosts the work units
 - Agents (pilots) are submitted via Ganga to any backend (Local, LSF, PBS, SGE, Condor, LCG (gLite WMS), etc...)
- Pluggable schedulers:
 - Embarassingly parallel tasks supported out of the box
 - DAG and workflow plugins available (see DAG4DIANE, MOTEUR)



The Ganga/DIANE Dashboard

- New system and interface for usage stats and also a new web job dashboard (alpha prototype)
- Available online at <u>http://gangamon.cern.ch/</u>

Ganga Usage Stats in 2010 (until Sept 7)

9/16/2010 EGI-InSPIRE RI-261323

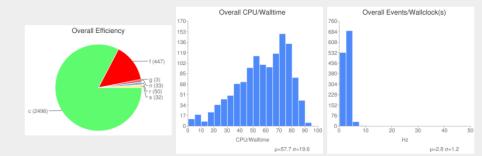
EGI-InSPIRE RI-261323

Ganga and DIANE Users

www.egi.eu

HammerCloud: DA Testing Service

- HammerCloud (HC) is a distributed analysis testing system built around Ganga
 - Developed initially with ATLAS; now being extended to support CMS and LHCb as well
- HC tests:
 - frequent functional tests to validate the services
 - on-demand stress tests to commission new sites or give benchmarks for site comparisons
- Ex: ATLAS has invested more that 200,000 CPU-days of HC testing since late 2008


	Time:	Now	0	
Endtime:	Date: Time:	Toda Now (y 🗇	
Test Template				
Test template:				•

state	id	host	clouds	start time (CET)	end time (CET)	total jobs
running	10001019	voatlas73	IT,DE,UK,6 more	2010-09-06 16:05:01	2010-09-07 16:05:01	3061

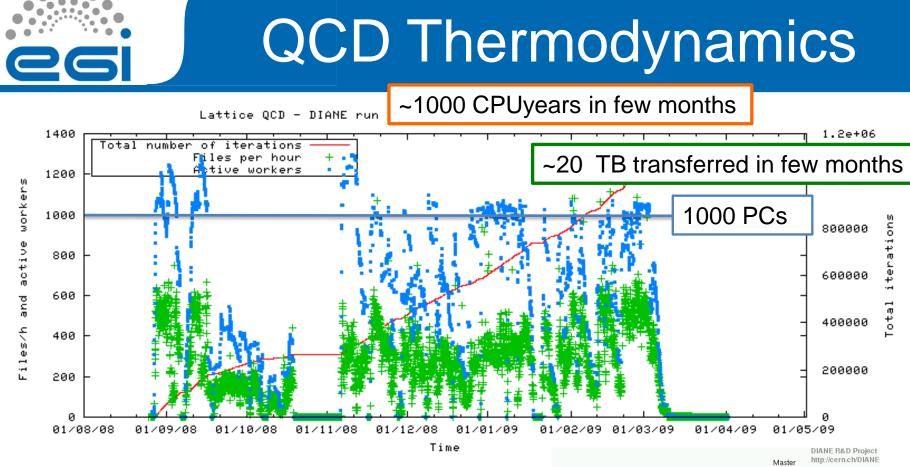
Add test

Input type: DQ2_LOCAL Output DS: user.elmsheus.hc.10001019.* Input DS Patterns: mc09_7TeV*merge.AOD*r1306* Ganga Job Template: /data/hammercloud/atlas/inputfiles/15.6.9/1569_LCG.tpl Athena User Area: /data/hammercloud/atlas/inputfiles/15.6.9/UserAnalysis_v1569.tar.gz Athena Option file: /data/hammercloud/atlas/inputfiles/15.6.9/AnalysisSkeleton_topOptions_v1569.py Test Template: 9 (functional) - UA 15.6.9 LCG DO2 Local

View Test Directory (for debugging)

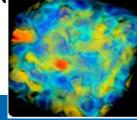
Poster #23: The HammerCloud Distributed Analysis Testing Service

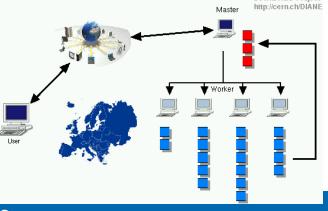
imense.com Image Classification for Search



9/16/2010 EGI-InSPIRE RI-261323

Ganga and DIANE – D. van der Ster


14 www.egi.eu


QCD Thermodynamics

•Results regularly presented to leading conferences: •Lattice 2007, 2008 and 2009 by Ph. De Forcrand

(ETH and CERN)

9/16/2010 EGI-InSPIRE RI-261323 Ganga and DIANE - D. van der Ster

15 www.eqi.eu

• DIANE and Ganga can be installed via simple installation scripts available online...

• Run these installation steps below to download and install DIANE:

mkdir ~/diane
cd ~/diane
wget http://cern.ch/diane/packages/diane-install
python diane-install 2.0-beta20
~/diane/install/2.0-beta20/bin/diane-env -d bash

 Run installation steps below to download and install Ganga:

wget http://cern.ch/ganga/download/ganga-install
python ganga-install [OPTIONS] VERSION

You can optionally install Ganga modules with:

--extern=GangaGUI,GangaPlotter

Visit cern.ch/DIANE and cern.ch/ganga for more information...

9/16/2010
EGI-InSPIRE RI-261323

Summary

- In the EGI era, enabling both end-users and application builders is a vital activity
- Ganga and DIANE are effective tools to scale up your scientific computations
 - Together they provide transparent and efficient usage of heterogeneous resources
- Startup overhead is relatively low. You can grid-enable your applications now!
- See poster #19 to learn more...