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Why is data management important? 
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Job run time 

Waiting for a job to start 

already 8 hours 



The basic data management problem 

Download 2GB files from mass-storage 



The basic data management problem 

Download 2GB files from mass-storage 

concurrency effects 
throughput exponentially 

components do not break but 
degrade until they fail QoS requirements 



Don Quijote 2 (DQ2) 

  Manage all ATLAS experiment data 
  provide data query / transfer / access / provenance capabilities for 

  users 
  analysis frameworks 

  between dedicated and on-demand resources (sites) 
  data centres 
  university installations & laptops 

  high performance 
  sustain 2000 MB/sec throughput aggregate, 1 mio file transfers daily (2010 estimates) 
  replication of data for parallel access 

  keep all data consistent 
  while still allowing high-latency distributed read-writes 

  easy to use 
  Optimisation problem 

  ∀user/framework u, request r: min(time-to-first-byte(un,rn)∧ time-to-last-byte(un,rn) 

  Software stack is called Don Quijote - Version 2 (DQ2) 
  managing all ATLAS data since 2005 



  Basic unit is a data set 
  logical collection of files 
  annotations of file data 
  subscriptions of data to sites 

  Decentralised structure 
  make use of already deployed Grid technologies 

  Sites are organised in Tiers (Computing Model) 
  hierarchical 
  each Tier has a specific role 

  Tier-0 (CERN) 
  record RAW detector data 
  distribute data to Tier-1s 
  calibration and first-pass reconstruction 

  Tier-1s (10 large data centres) 
  permanent storage 
  capacity for reprocessing and bulk analysis 

  Tier-2s (~100 institutes, some bigger, some smaller) 
  Monte-Carlo simulation 
  user analysis 
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Don Quijote 2 (DQ2) 



Don Quijote 2 (DQ2) 

  Centralised catalogues (HTTP / Oracle) 
  Repository (datasets) 
  Content (files in datasets) 
  Location (datasets at sites) 
  Accounting (user on data) 
  Subscription (dataset to site) 
  Tracing (framework/user activity) 

  Distributed site service agents 
  every site has one 
  enact / monitor transfers (dataset subscriptions) 
  consistency check and repair 
  deletion of data 

  Clients and API 
  File Catalogs (LFC) and Transfer Service (FTS) 

  not part of DQ2 but WLCG foundation 
  logical to physical mapping of files 
  physical transport of files 

DQ2  Clients & API

DQ2

Common
Modular 

Framework
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Data Export

from dq2.clientapi.DQ2 import DQ2 
dq2 = DQ2() 
dict = dq2.listDatasets(’test.xyz*’) 



Don Quijote 2 (DQ2) 

  DQ2 is a parallel multi-queue-based system 
  site services schedule all transfers to achieve a configured min-max QoS 

  e.g.: complete dataset, channel throughput, site utilisation 
  late reshuffling of queues 

  lots of small files in ATLAS (avg. 100 000 files backlog per multi-queue) 
  (high,med,low)-priority datasets 

  exponential back-off retrial strategy 
  no prediction (too slow) 
  feedback-based only (faster to ask for forgiveness than permission) 
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5 GB/sec :-) 

half a million 
files every day 



Directed transfers 

  burst behaviour everywhere, but we can still cope 



  Users interact via DQ2Clients 
  create/retrieve datasets 
  immediate interaction, no schedules 

  Original metric: 
  “angry email from a physicist” 

  We needed to understand what’s happening 
with the system, and the existing monitoring 
infrastructures simply couldn’t keep up 
  arrival rate of events 
  information overload vs. not enough information 
  volunteered/locked-down infrastructure 

  Build the monitoring directly in the DQ2 client 
application layer and capture workload streams 
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Capturing run-time information 



:: Stream monitoring :: 
Design principles and reference architecture 
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:: Stream monitoring :: 
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Allow HTTP calls & payload as stream events 
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Validate the payload (basic data types) and the order of events 
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Pre-compute/Aggregate possible summary values 
and automatically attach event metadata 
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and a centralised data mining area 
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:: Stream monitoring :: 
Extensions for concealed environments 
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Capturing run-time information 
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Concealed environment A Concealed environment B
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Stochastic tracing 

  Stochastic tracing data yields useful implicit information 
  system component behaviour (storage elements, middleware, …) 
  user behaviour (access patterns, data popularity, …) 
  without resorting to specialised monitoring infrastructures 

  As of September 2010 
  tracing file events since May 2008, ramp up in November 2008 
  580.000.000 tracer events 
  event arrival rate of 25±3 Hz 
  detached server computational overhead 0.03±0.01 
  central server computational overhead 0.01±0.01 
  network throughput overhead 0.04±0.02 



Popularity service 

  First application to use this data 
  helps operators decide what to replicate and what to delete 
  immense amount of data (~35Hz, 24/7) 
  incremental generation of daily, weekly, ... reports 
  basic data mining support for association rules in trace events 



Popularity service 



  We cannot control what our users do 
  and in some way, that’s both good and bad 

  remember the Computing Model 
1.  data is moved by DQ2 automatically 
2.  user submits analysis job 
3.  scheduler selects a Tier-2 with required data for the job 
4.  job runs at Tier-2 (“send the job to the data”) 

Tier-2 

Analysis farm 

Monte Carlo farm 

SelSD, 
AOD 

MC 

ESD, AOD 

Users 

User behaviour 
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Dataset access (real vs. sim data) 



Distinct users (real vs. sim data) 



Access vs Replicas (real data) 



Access vs Replicas (sim data) 



Replication factor 

useless distribution 
of data 



Dataset access 



Dataset access 

~10 heavy users 
dataset read several times 
‘normal’ analysis pattern 



Summary 

  We are just starting to understand data management at this scale 
  “it works”™ 

  still, but we constantly grow 
  therefore we need to understand exactly what’s going on in almost real-time 
  rebuilding full system in simulation (sim currently in validation) 

  many different monitoring infrastructures, yet none call tell us what the users 
really do 
  too much heterogeneous data 
  consolidation of data too time-consuming 
  we had to build this tracer directly in all our software 
  make it easy for 3rd party apps to hook in via simple HTTP calls 
  provide realistic workload for the simulation studies 

  So, if you want to remember just one thing from this work: 

“Monitoring of user behaviour needs to be done explicitly, 
and in a very simple way.” 
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