
EGI Technical Forum, 14-09-10, Amsterdam

Scalable stochastic tracing
of distributed data management events

Mario Lassnig

mario.lassnig@cern.ch

ATLAS Data Processing – CERN Physics Department
Distributed and Parallel Systems – University of Innsbruck

Why is data management important?

Why is data management important?

Job run time

Waiting for a job to start

already 8 hours

The basic data management problem

Download 2GB files from mass-storage

The basic data management problem

Download 2GB files from mass-storage

concurrency effects
throughput exponentially

components do not break but
degrade until they fail QoS requirements

Don Quijote 2 (DQ2)

  Manage all ATLAS experiment data
  provide data query / transfer / access / provenance capabilities for

  users
  analysis frameworks

  between dedicated and on-demand resources (sites)
  data centres
  university installations & laptops

  high performance
  sustain 2000 MB/sec throughput aggregate, 1 mio file transfers daily (2010 estimates)
  replication of data for parallel access

  keep all data consistent
  while still allowing high-latency distributed read-writes

  easy to use
  Optimisation problem

  ∀user/framework u, request r: min(time-to-first-byte(un,rn)∧ time-to-last-byte(un,rn)

  Software stack is called Don Quijote - Version 2 (DQ2)
  managing all ATLAS data since 2005

  Basic unit is a data set
  logical collection of files
  annotations of file data
  subscriptions of data to sites

  Decentralised structure
  make use of already deployed Grid technologies

  Sites are organised in Tiers (Computing Model)
  hierarchical
  each Tier has a specific role

  Tier-0 (CERN)
  record RAW detector data
  distribute data to Tier-1s
  calibration and first-pass reconstruction

  Tier-1s (10 large data centres)
  permanent storage
  capacity for reprocessing and bulk analysis

  Tier-2s (~100 institutes, some bigger, some smaller)
  Monte-Carlo simulation
  user analysis

Tier-1

Tier-0

Online filter farm
RAW
ESD
AOD Reconstruction farm

RAW
ESD
AOD
MC

Analysis farm

Re-reconstruction farm

Tier-2

Analysis farm

Monte Carlo farm

SelSD,
AOD

RAW

RAW

ESD
AOD

ESD, AOD

RAW

MC

RAW
ESD
AOD

ESD, AOD

Don Quijote 2 (DQ2)

Don Quijote 2 (DQ2)

  Centralised catalogues (HTTP / Oracle)
  Repository (datasets)
  Content (files in datasets)
  Location (datasets at sites)
  Accounting (user on data)
  Subscription (dataset to site)
  Tracing (framework/user activity)

  Distributed site service agents
  every site has one
  enact / monitor transfers (dataset subscriptions)
  consistency check and repair
  deletion of data

  Clients and API
  File Catalogs (LFC) and Transfer Service (FTS)

  not part of DQ2 but WLCG foundation
  logical to physical mapping of files
  physical transport of files

DQ2 Clients & API

DQ2

Common
Modular

Framework

Production Analysis Interactive
Physics
Metadata

WLCG

OPEN SCIENCE GRIDLHC COMPUTING GRID NORDUGRID

Site Services

Centrals Catalogs

Database

DeletionTransfer Consistency

Repository, Content

Location,
Accounting,
Subscription

Tracer

Data Export

from dq2.clientapi.DQ2 import DQ2
dq2 = DQ2()
dict = dq2.listDatasets(’test.xyz*’)

Don Quijote 2 (DQ2)

  DQ2 is a parallel multi-queue-based system
  site services schedule all transfers to achieve a configured min-max QoS

  e.g.: complete dataset, channel throughput, site utilisation
  late reshuffling of queues

  lots of small files in ATLAS (avg. 100 000 files backlog per multi-queue)
  (high,med,low)-priority datasets

  exponential back-off retrial strategy
  no prediction (too slow)
  feedback-based only (faster to ask for forgiveness than permission)

Directed transfers
Th

ro
ug

hp
ut

 (M
B/

s)

Fi
le

 tr
an

sf
er

s

5 GB/sec :-)

half a million
files every day

Directed transfers

  burst behaviour everywhere, but we can still cope

  Users interact via DQ2Clients
  create/retrieve datasets
  immediate interaction, no schedules

  Original metric:
  “angry email from a physicist”

  We needed to understand what’s happening
with the system, and the existing monitoring
infrastructures simply couldn’t keep up
  arrival rate of events
  information overload vs. not enough information
  volunteered/locked-down infrastructure

  Build the monitoring directly in the DQ2 client
application layer and capture workload streams

validate environment

validate user input

thread per
dataset

load balancing
select site

verify/select available
dependencies

construct remote
transfer call

thread per
file

enact transfer

verify

query global
namespace

query data
information system

query site information
system

query local
namespace

query dependency
configuration

query remote storage

send event

dataset

file

file

file

t

file.1

file.2

file.A

file.B

file.C

file.X

file.Y

dataset.1

dataset.2

dataset.3

dataset.*

Capturing run-time information

:: Stream monitoring ::
Design principles and reference architecture

Streaming
Input

Streaming
Output

Input
Monitor

Working
storage

Summary
storage

Static
storage

Query
Storage

Output
Buffer

Query
Processor

Updates to
static data

User
queries

:: Stream monitoring ::
Extensions for concealed environments

Streaming
Input

Streaming
Output

Input
Monitor

Working
storage

Summary
storage

Static
storage

Query
Storage

Output
Buffer

Query
Processor

Updates to
static data

User
queries

Generic
HTTP

Interface

:: Stream monitoring ::
Extensions for concealed environments

Streaming
Input

Streaming
Output

Input
Monitor

Working
storage

Summary
storage

Static
storage

Query
Storage

Output
Buffer

Query
Processor

Updates to
static data

User
queries

Generic
HTTP

Interface

Allow HTTP calls & payload as stream events

:: Stream monitoring ::
Extensions for concealed environments

Streaming
Input

Streaming
Output

Input
Monitor

Working
storage

Summary
storage

Static
storage

Query
Storage

Output
Buffer

Query
Processor

Updates to
static data

User
queries

Generic
HTTP

Interface

Validator

:: Stream monitoring ::
Extensions for concealed environments

Streaming
Input

Streaming
Output

Input
Monitor

Working
storage

Summary
storage

Static
storage

Query
Storage

Output
Buffer

Query
Processor

Updates to
static data

User
queries

Generic
HTTP

Interface

Validator

Validate the payload (basic data types) and the order of events

:: Stream monitoring ::
Extensions for concealed environments

Streaming
Input

Streaming
Output

Input
Monitor

Working
storage

Pre-
computation

Static
storage

Query
Storage

Output
Buffer

Query
Processor

Updates to
static data

User
queries

Generic
HTTP

Interface

Validator

Summary
storage

:: Stream monitoring ::
Extensions for concealed environments

Streaming
Input

Streaming
Output

Input
Monitor

Working
storage

Pre-
computation

Static
storage

Query
Storage

Output
Buffer

Query
Processor

Updates to
static data

User
queries

Generic
HTTP

Interface

Validator

Summary
storage

Pre-compute/Aggregate possible summary values
and automatically attach event metadata

:: Stream monitoring ::
Extensions for concealed environments

Streaming
Input

Streaming
Output

Input
Monitor

Working
storage

Pre-
computation

Static
storage

Query
Storage

Output
Buffer

Query
Processor

Updates to
static data

User
queries

Generic
HTTP

Interface

Validator

Summary
storage

Detached server Central server

:: Stream monitoring ::
Extensions for concealed environments

Streaming
Input

Streaming
Output

Input
Monitor

Working
storage

Pre-
computation

Static
storage

Query
Storage

Output
Buffer

Query
Processor

Updates to
static data

User
queries

Generic
HTTP

Interface

Validator

Summary
storage

Detached server Central server

Split into many detached working areas
and a centralised data mining area

:: Stream monitoring ::
Extensions for concealed environments

Streaming
Input

Streaming
Output

Input
Monitor

Working
storage

Pre-
computation

Query
Storage

Output
Buffer

Query
Processor

Updates to
static data

User
queries

Generic
HTTP

Interface

Validator Summary
storage

Detached server Central server

Static
storage

:: Stream monitoring ::
Extensions for concealed environments

Streaming
Input

Streaming
Output

Input
Monitor

Working
storage

Pre-
computation

Query
Storage

Output
Buffer

Query
Processor

Updates to
static data

User
queries

Generic
HTTP

Interface

Validator Summary
storage

Detached server Central server

Static
storage

Only keep one static storage in the data mining area

Capturing run-time information

Client

Client

Client

Client

Generic

HTTP

Interface

Detached server A Client

Client

Client

Generic

HTTP

Interface

Detached server B

Concealed environment A Concealed environment B

Central server

Stochastic tracing

  Stochastic tracing data yields useful implicit information
  system component behaviour (storage elements, middleware, …)
  user behaviour (access patterns, data popularity, …)
  without resorting to specialised monitoring infrastructures

  As of September 2010
  tracing file events since May 2008, ramp up in November 2008
  580.000.000 tracer events
  event arrival rate of 25±3 Hz
  detached server computational overhead 0.03±0.01
  central server computational overhead 0.01±0.01
  network throughput overhead 0.04±0.02

Popularity service

  First application to use this data
  helps operators decide what to replicate and what to delete
  immense amount of data (~35Hz, 24/7)
  incremental generation of daily, weekly, ... reports
  basic data mining support for association rules in trace events

Popularity service

  We cannot control what our users do
  and in some way, that’s both good and bad

  remember the Computing Model
1.  data is moved by DQ2 automatically
2.  user submits analysis job
3.  scheduler selects a Tier-2 with required data for the job
4.  job runs at Tier-2 (“send the job to the data”)

Tier-2

Analysis farm

Monte Carlo farm

SelSD,
AOD

MC

ESD, AOD

Users

User behaviour

!"#$%&'(

)*'!$+,

%-.$%-/01)

./)&

*2/3$")

/4+(

55&$#-

'12'5-*

6#-$/16+7'5-*$&89$72.

)-#72!$2%.51*

0)%$1/'(

&25)$.51*

6#-$%+($6&%$&2)+58%

-)!)$+,

6#-$/&1+'5-*$'%8/'14

6#-$)15+7'5-*$%8)&/$72.

+151)+1$%&'(

8%025+8$%&'(

94+(

46..25+8%.51*

.-&

56$.51+:-)1$-72.

6#-$)15+7'5-*$%-:$72.

-)!)$9-%8)1

-)!)$!58/&8+- +8-48)$%&'(

/!6$%&'(

6)-$!52-065'

-!-&$%&'(

6#-$/16+7'5-*$1;$72.

9..96

86/+58%-8$8+%8/

-)!)$9-%8)1$8+%8/&

6#-$/16+7'5-*$58%..

+5-69!$%&'(

*2/3$77

+1#31$%&'(

'5-!$%8%

-)(.<$&&

-)(.<$%./&

-)!)$5198,

-)(.<$%8..

6#-$)15+7'5-*$/72!$72.

-)!)$)8.1%-$8+%8/

:-&+15-8$%&'(

&3!51)2+$%&'(

-)(.<$&..9

72.73$6-0#

6#-$)15+7'5-*$98)$72.,

-%%-)1-/72.

%5"$%96

&/&/$%&'(

6#-$/16+7'5-*$0789$72.

02-=-)'$%&'(

8'%+(

.58'62%&'(

%-.$&1-9058

/-')2+

=-)5$%&'(

6#-$/&1+'5-*$2&*!

/858$98+5-;

51$>?$)-.)2

-+2.

6#-$/&1+'5-*$*65789

6#-$%+($@96%

-!82

6)-$*15+96)*

51$>($)-.)2

6#-$%+($576%

6#-$%+($056)2%

&/+&*-2

689$%&'(

22%8$6+!/9

-)(.<$%.&

+5$,>$6%8#0-9

'5-!$%.)72

)2+(

06

56$91/&14$/-).$%&'(

4-/&

/%8&;5*

8/'&*-/#

58%$%&'(

42-"98))$%&'(

+4$!++

56$.).-

6#-$)15+7'5-*$98)$72.(

'5-!$/8&%83

/2$/)-&$+(

6+8

6+*

Dataset access (real vs. sim data)

Distinct users (real vs. sim data)

Access vs Replicas (real data)

Access vs Replicas (sim data)

Replication factor

useless distribution
of data

Dataset access

Dataset access

~10 heavy users
dataset read several times
‘normal’ analysis pattern

Summary

  We are just starting to understand data management at this scale
  “it works”™

  still, but we constantly grow
  therefore we need to understand exactly what’s going on in almost real-time
  rebuilding full system in simulation (sim currently in validation)

  many different monitoring infrastructures, yet none call tell us what the users
really do
  too much heterogeneous data
  consolidation of data too time-consuming
  we had to build this tracer directly in all our software
  make it easy for 3rd party apps to hook in via simple HTTP calls
  provide realistic workload for the simulation studies

  So, if you want to remember just one thing from this work:

“Monitoring of user behaviour needs to be done explicitly,
and in a very simple way.”

EGI Technical Forum, 14-09-10, Amsterdam

Scalable stochastic tracing
of distributed data management events

Mario Lassnig

mario.lassnig@cern.ch

  M. Lassnig, T. Fahringer, V. Garonne, A. Molfetas, M. Branco, ``Identification, modelling and prediction of non-periodic bursts in
workloads'', Proc. 10th IEEE Int. Conference on Cluster, Cloud and Grid Computing, IEEE, 2010

  M. Lassnig, T. Fahringer, V. Garonne, A. Molfetas, M. Branco, ``Stream monitoring in large-scale distributed concealed
environments'', Proc. 5th IEEE Int. Conference on e-Science, IEEE, 2009

  M. Branco, E. Zaluska, D. De Roure, M. Lassnig, V. Garonne, ``Managing very large distributed datasets on a Data Grid'',
Concurrency and Computation: Practice & Experience, in press (early view available), Wiley, 2009

  M. Branco, E. Zaluska, D. De Roure, P. Salgado, V. Garonne, M. Lassnig, R. Rocha, ``Managing Very-Large Distributed
Datasets'', Lecture Notes in Computer Science, Vol. 5331(2008), Springer, 2008

