

Atlas experience with ARC

Andrej Filipčič Jozef Stefan Institute Ljubljana, Slovenia

Atlas

Computing infrastructure

- CERN T0
- 10 clouds
 - T1 centers
 - Associated T2s, T3s
- 250 sites
- 70k cores
- 50PB of storage
- 3 grid flavors: gLite, OSG, ARC

Production system

- PanDA: central task definition, brokering, job control
 - Web interface
 - Client tools (pathena, ganga, ...)
- Autopilot factory: (dummy) job submission to gLite/OSG/ARC clusters
- Pilot: running on WN, payload from PanDA, job control callbacks, middleware/site dependencies handled by 25k lines of python
 - Monte-Carlo production (1GB/core/day)
 - Data processing (20GB/core/day)
 - User analysis (200GB/core/day)
- DDM data management system (DQ2, SRM, LFC, FTS)
- Tasks brokered to clouds, jobs brokered to sites
- Typically per day:
 - 200k production jobs
 - 200-300k analysis jobs
 - 1-2PB data processed
 - 500TB data moved between sites
 - 10⁷ catalog operations

Production dashboard

Active tasks: CA:2 CERN:3 DE:16 ES:5 FR:12 IT:7 ND:13 NL:13 TW:6 UK:6 US:25 Bamboo task brokerage, job submissions, status over last 12 hours

Jobs updated > 12 hrs ago: activated: 20140 running: none Jobs updated >36 hrs ago: transferring: 1

Summary plots by cloud

Cloud efficiency history

Production job summary, last 12 hours (Details: errors, nodes)

Comments/requests on the new summary table to Torre (wenaus@gmail.com). Old version of page is here

Processing types: evgen(2050) merge(8632) pile(11496) prod test(195) reco(60) reprocessing(11256) simul(223598) validation(961)

Users: Johanna.Fleckner(10) Michiru.Kaneda(60) borut.kersevan(246727) douglas(195) nick.barlow(6743) pavel.nevski(4410) strandbe(103)

Pilot counts are for the last 3 hours. Error rates above 5% are shown in red.

Cloud	Pilots	Latest	defined	assigned	waiting	activated	sent	running	holding	transferring	finished	failed	cancelled	%fail
ALL			<u>0</u>	<u>879</u>	<u>6</u>	46892	2	30628	1826	17922	107656	19490	32947	15%
<u>CA</u> ₩	338	09-13 22:20	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>	<u>3</u>	<u>0</u>	<u>132</u>	<u>7967</u>	890	<u>1213</u>	10%
CERN (brokeroff) V	367	09-13 22:20	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>	<u>9</u>	<u>1</u>	<u>0</u>	<u>639</u>	333	<u>0</u>	34%
<u>DE</u> ₩	3719	09-13 22:20	0	<u>0</u>	0	<u>796</u>	<u>0</u>	2320	223	3482	20423	<u>2513</u>	<u>5045</u>	11%
<u>ES</u> ₩	574	09-13 22:20	0	<u>0</u>	0	1258	<u>0</u>	<u>760</u>	<u>77</u>	1209	<u>3071</u>	1832	<u>1383</u>	37%
<u>FR</u> ₩	2887	09-13 22:20	0	231	0	12756	2	8399	<u>260</u>	1452	<u>7770</u>	<u>1796</u>	<u>17375</u>	19%
<u>n</u> 🔀	328	09-13 22:20	0	<u>0</u>	0	<u>582</u>	<u>0</u>	<u>296</u>	<u>39</u>	1490	<u>7046</u>	<u>3576</u>	<u>633</u>	34%
<u>ND</u> ₩	504	09-13 22:20	0	<u>0</u>	0	3028	<u>0</u>	<u>4531</u>	<u>175</u>	214	12567	189	<u>1433</u>	1%
<u>NL</u> ₩	1169	09-13 22:20	0	<u>648</u>	<u>6</u>	1432	<u>0</u>	<u>1541</u>	213	1230	<u>7559</u>	1461	<u>687</u>	16%
<u>™</u> ⊻	567	09-13 22:20	0	<u>0</u>	0	<u>0</u>	<u>0</u>	<u>550</u>	<u>37</u>	<u>10</u>	<u>3699</u>	<u>770</u>	<u>1369</u>	17%
<u>uk</u>	2258	09-13 22:20	0	<u>0</u>	0	9740	<u>0</u>	<u>3737</u>	<u>196</u>	<u>3517</u>	11460	6100	2714	35%
<u>us</u> ₩	3381	09-13 22:20	0	<u>0</u>	0	17300	<u>0</u>	8482	<u>605</u>	<u>5186</u>	25455	30	1095	0%

ND cloud

- NDGF T1
 - 2.5PB distributed dCache storage (disk, tape)
- T1, T2, T3
 - 15 clusters: NO, SE, DK, SI, CH, UK
 - 4-6k cores available to Atlas (of 16k)
- 10Gb/s OPN for storage + mostly 10Gb/s Geant for clusters

ARC queues

ND <u>Tasks</u> Jobs:	activated:12038 running:2647 holding:49 transferri				
	ANALY_ARC	ANALY_ARC	4	online	manual
	ARC-arc-ce.smokerings.nsc.liu.se	ARC	4	online	manual
ARC	ARC-arc-ce01.pdc.kth.se	ARC	4	online	manual
	ARC-arc.bccs.uib.no	ARC	4	online	manual
	ARC-arc01.lcg.cscs.ch	ARC	4	online	manual
	ARC-ce.lhep.unibe.ch	ARC	4	online	manual
	ARC-ce01.titan.uio.no	ARC	4	online	manual
	ARC-gateway01.dcsc.ku.dk	ARC	4	online	manual
	ARC-grad.uppmax.uu.se	ARC	4	online	manual
	ARC-grid.uio.no	ARC	4	online	manual
	ARC-grid03.unige.ch	ARC	4	online	manual
	ARC-jeannedarc.hpc2n.umu.se	ARC	4	online	manual
	ARC-nordugrid.unibe.ch	ARC NoComment	4	online	auto
	ARC-pikolit.ijs.si	ARC	4	online	manual
	ARC-siri.lunarc.lu.se	ARC	4	online	manual
	ARC-T2-arc-ce.smokerings.nsc.liu.se	ARC-T2	4	online	manual
	ARC-T2-arc-ce01.pdc.kth.se	ARC-T2	4	online	manual
	ARC-T2-arc.bccs.uib.no	ARC-T2	4	online	manual
	ARC-T2-arc01.lcg.cscs.ch	ARC-T2	4	online	manual
	ARC-T2-arc02.lcg.cscs.ch	ARC-T2	4	online	manual
	ARC-T2-ce.lhep.unibe.ch	ARC-T2	4	online	manual
	ARC-T2-ce01.titan.uio.no	ARC-T2	4	online	manual
ARC-T2	ARC-T2-gateway01.dcsc.ku.dk	ARC-T2	4	online	manual
	ARC-T2-grad.uppmax.uu.se	ARC-T2	4	online	manual
	ARC-T2-grid.uio.no	ARC-T2	4	online	manual
	ARC-T2-grid03.unige.ch	ARC-T2	4	online	manual
	ARC-T2-jeannedarc.hpc2n.umu.se	ARC-T2	4	online	manual
	ARC-T2-nordugrid.unibe.ch	ARC-T2 Massive failure	4	online	manual
	ARC-T2-pikolit.ijs.si	ARC-T2	4	online	manual
	ARC-T2-siri.lunarc.lu.se	ARC-T2	4	online	manual

Atlas Monitor

Grid Monitor

2010-09-14 CEST 05:38:24

~ ^ - ^

Processes: Grid Lo	cal			≥ № № = &
Country	Site	CPUs	Load (processes: Grid+local)	Queueing
= Denmark	Steno (DCSC/KU)	2744	430+1747	1880 +6
Norway	EPF (UiO/FI)	20	0+6	1+0
	Titan A (UiO/USIT)	4624	550+2432	116 +6474
Slovenia	Arnes	264	261+3	158+0
	SIGNET	1152	1064+86	1383+1
:= Sweden	Grad (SweGrid, Uppmax)	512	504+0	1963+28
	Ritsem (SweGrid, HPC2>	512	485+2	3045+0
	Ruth (SweGrid, PDC)	286	277+0	1366+-2
	Siri (SweGrid, Lunarc)	496	251 +232	2770 +51
	Smokerings (NSC)	512	183+305	2711 +0
Switzerland	Bern ATLAS T3	212	144+0	113+0
	Bern UBELIX T3 Cluster	1072	264+499	184+327
	Geneva ATLAS T3	222	120+50	63+0
	Manno PHOENIX T2	1536	195+473	89+3
	Manno PHOENIX T2	1536	300+704	66+4
₩ UK	UKI-SCOTGRID-GLASGOW	1980	0+240	0+0
TOTAL	16 sites	17680	5028 + 6779	15908 + 6892

arcControlTower

- Unique ARC features, not possible with (true) pilots
 - Walltime, memory, installed software (RTE) brokering
 - Dynamic Atlas GIIS, automatic cluster brokering/submission
 - Data transfer performed on ARC CE frontend
 - Cache + ACIX index
- aCT: Intermediate submission system
 - Autopilot factory
 - Pilot functionality: payload, panda callbacks
 - Submission of fully defined jobs
 - ARC job control
 - Data transfer + registration
- ARC pseudo pilot jobs on WN: no middleware required on WNs
 - All files available locally
 - Pilot in local mode: pure job execution

Production last 6 months

Average efficiency: 95.7%

Failures mostly due to Athena crashes (validation of new releases, reconstruction failures, ...)

Cluster running only stable MC simulation: 99.3% efficiency

gLite/ARC in Atlas

• gLite:

- True pilot jobs: scheduling controlled by PanDA -> fast, controlled job throughput
- High failure rate (20%) of gLite dummy jobs, hidden to Atlas monitoring
- Still using WMS, CREAM is in preparation
- Submission to one site (cluster), one or several queues
- Strict SE/CE mapping: jobs must have inputs on local SE
- All remote transfers done by DDM

ARC

- Two virtual sites submitting to all the clusters (one queue per cluster)
- Direct job submission: additional waiting time in the batch system
- High reliability, better core efficiency
- Suitable for custom tasks (large memory, long walltime, selected architecture)
- Some difficulties to fit the current PanDA organization, monitoring not transparent to shifters
- Remote transfers done by CE from/to NDGF-T1 dCache: fast transfers required
- Clusters with slow transfer limited to low I/O jobs
- Analysis throughput is fast when inputs are pre-cached on CE, slower for fresh data (80% of jobs have inputs pre-cached on average)
- Automatic job recovery with downtimes

How does ARC CE fit Atlas

- Several compromises had to be done to fit current rigid job workflow and data model
- Custom submitter developed, still some missing functionality (software autoinstallation)
- Some jobs do not run yet (TAG analysis with on-demand inputs)
- Transfers done by ARC middleware, in some cases it is quicker to add new functionality in pilot code
- In general, very good performance thanks to ARC and NDGF dCache
 - cluster downtimes do not stop ND cloud job processing
 - dCache pool (site) downtimes do not stop jobs due to recent file auto-replication
 - Critical service downtimes are short
- Several non-standard OSes used: Ubuntu, Gentoo (64-bit from 2004)
- Many batch systems in use: torque, SGE, LL, SLURM, easy
- Critical middleware bugs solved promptly, requested features implemented quickly
- Testing new releases requires only one server

Difficulties

- Traditional model does not scale
 - Amount of data grows, storage space limited, data replication will be reduced: many smaller sites will be able to run only a limited subset of analysis tasks
 - Large high-priority tasks need several experts to speed-up the job distribution and data migration
 - Clusters are far from uniform (expected) performance: not enough to count cores to distribute jobs
- Still too much human intervention needed in case of:
 - High-failure rate
 - Data distribution, space management
 - High-priority jobs (MC validation, reprocessing)
 - Error recovery (data corruption)
 - Network failures (partially working transfers)

Plans for the future

- ARC CE for T3 (T2) analysis
 - Cache-aware brokering in PanDA: run on site with inputs in ARC cache
 - If not, pre-staging job to selected cluster: fill the ARC cache with inputs, downloads from storage within the same cloud (preferred sites)
 - Real job activated after pre-staging job is completed: inputs are pre-cached
 - First attempt to relax the strict data model

Missing parts

- gLite + ARC distributions not compatible on the same host: standalone ARC client on gLite installation
- Finalize the instructions to setup ARC CE
- Provide the documentation
 - to fully include ARC CE site within EGI infrastructure
 - for gLite (OSG) experts to quickly and better understand the ARC CE model

More missing parts

- Compatible software repositories
- Unified clients: tools, submission interface
- Job priorities, advanced reservations
- Transparent data management
 - Index, metadata
 - Data migration
 - Error recovery
 - Replication
- Efficient use of resources
 - Cores not used since data not available
 - Lack of free space due to over-replication
- Last but not least, clusters are expensive and making them useless by canceling support for older systems is a bad idea, especially for sites with limited funding. Instead, middleware should gain a broader platform support.

The final goal...

- Users do not care where jobs run as long as they run quickly and reliably, and where the files are stored as long as they can be retrieved fast
- Many Atlas users moved their analysis to grid since the (Atlas) interface is far simpler and much quicker than anything else
- The goal of EGI should be to provide the basis for the above to be true for everybody else

Conclusions

- ARC on Nordugrid/NDGF is a stable Atlas resource provider for more than 5 years
- A cluster with low resources can significantly contribute to Atlas production
- ARC CE can provide a significant role in overcoming the rigidity of the current production and data model