HPC-Grid workflows in fusion: The EUFORIA approach

Francisco Castejón (JRA1 Leader)

on behalf of EUFORIA team

francisco.castejon@ciemat.es

EUFORIA

14 member Institutes 3.65M€ over 36 months

522pms covering

- Management
- Training
- Dissemination
- Grid and HPC infrastructure & support
- Code adaptation & optimization
- -Workflows
- -Visualization

IFRASTRUCTURES: SA1 (GRID) + SA2 (HPCs)

HECTOR(EPCC, UK) -Cray XT4 (integrated with X2 vector system in a single machine). XT4: 11,328 cores. Processor: 2.8GHz Opteron; 33.2TB RAM. 59Tflops theoretical peak. X2: 112 vector processors; 2.87Tflops theoretical peak-No. 29 in Top 500 (54.65 TflopsLINPACK)

MareNostrum(BSC, Spain)

—IBM Cluster. 10240

cores. Processor: 2.3GHz

PPC 970; 20TB.

94.21Tflops peak.

—No.26 in Top 500

(63.83 Tflops INPACK)

e-infrastructure

Work plan outline

DEVELOPING A NEW PARADIGM FOR FUSION COMPUTING

What we have shown

- The feasibility of mixed HPC-Grid scientific workflows.
 - Building blocks for complex fusion modeling workflows. To be used by EFDA -European Fusion Development Agreement-, the European fusion community.
- Developments essential for fusion community that could be reused by other communities. The developments will be accessible for EFDA Associates.
- To help fusion scientists by enhancing the modeling capabilities for ITER sized plasmas.
 - To promote innovative aspects:
 - Dynamic coupling of codes and applications on a set of heterogeneous platforms into a single framework through a workflow engine. 6

Fusion community

Using top computational environments.

Wide range of applications: serial, MPI, shared-memory, ...

Complex experiments:
Necessity of connecting
different models (applications)
→ WORKFLOWS

Several applications running and exchanging data in different infrastructures.

Necessity for an easy and widely known environment.

Complex Workflows: Why?

- Necesity of communicate applications that act on different research fields or time scales.
- Problems with very different scales (time and space):
 - Time:

Cyclotron (Larmor) Frequency ~10⁻¹⁰ s → Transport ~ 10 s

Space:

Electron Larmor radius ~10⁻³ m → Reactor ~ 10 m

- They can run on Grid or HPC.
- The Workflows can be Binary, Cyclic of more complex (like DAB application).

Building Workflows

 A universal form to establish a WF in Fusion is using a Transport code (Evolving Plasma Characteristics)

$$\frac{dn^{s}}{dt} + \nabla \Gamma^{s} = S^{s}$$

$$\frac{3}{2}n^{s}\frac{dnT^{s}}{dt} + \nabla q^{s} = P_{in} - P_{loss}$$

• Sources and Losses: Heavy and Complex functions. Calculated on Grid or HPC.

• Fluxes: Transport Coefficients: Again Complex and heavy functions.

$$\Gamma^s = -D_1^s \nabla n^s + D_2^s \nabla T^s$$

$$q^{s} = -\chi^{s} n^{s} \nabla T^{s} + D_{3}^{s} \nabla n^{s}$$

KEPLER

- Flexible workflow engine that comes from ISI in USA. Available for free usage. https://kepler-project.org/
- It enables the communication with UNICORE (UNICORNIO) and gLite.
- It permits establishing complex workflows:

Grid - Grid

HPC - HPC

Grid - HPC

- The applications are actors launched by Kepler.
- Visualization based on Visit

(5D FILES!)

External Data

- HPC
- Grid
- Visualization

App1

App2

- HPC
- Grid
- Visualization

- HPC
- Grid
- Visualization

App3

KEPLER

11

Example of Workflow

Input: Plasma (n, T, Equilibrium) →

Plasma Evolution (ASTRA-HPC)→

Heating properties (TRUBA-grid)→

Plasma Evolution (ASTRA-HPC)→

Heating properties (TRUBA-grid)→.

System Architecture

HPC Altamira (IFCA)

13

Kepler launches the different actors and organizes the workflow.

Kepler runs on the fusion Gateway.

One actor (ASTRA) running on HPC: MPI from 16 CPUs.

And the other (TRUBA) on the grid (thousands of jobs).

Resources needed

- Kepler: can run on a PC but we run it on the Fusion Gateway (A cluster with 128 CPUs with a huge memory capacity and a fast access to data) to manage the data produced by the workflow.
- ASTRA: MPI from 16 CPUs (depending on the transport model)

INPUT: Several small files (100 kB), Equilibrium (50 MB)

- TRUBA-grid. Serial. Thousands of independent jobs (10 min CPU per job): One job per ray.

The same INPUT as for ASTRA. Usage of Data Catalogue.

Wall- clock Time: About 48 hr.

Memory requirements:

Several equilibria kept during the evolution.

CONCLUSIONS

- After EGEE Projects, Fusion has become a Heavy User Community of the grid.
- More than 10 fusion applications running on the grid:
 - ☑ Covering different fusion research topics. → IMPORTANT FOR THE DIVERSITY OF WFS.
- New computing paradigm in fusion that establishes workflows of heterogeneous applications running on different architectures.
- Tradtional use of HPCs.
- Relevant scientific results on the grid: 15 fusion papers in peer reviewed journals, including a PhD thesis plus two more in preparation.

CONCLUSIONS

- Fusion Gateway: Access to European Fusion Resources.
- Grid-Computing resources: Test Bed: EUFORIA-VO

Fusion VO (~45,000 CPUs, Working during EGI).

- HPC Resources:

 - Mare Nostrum: Access Committee.
 - M Altamira (CSIC. Spain). Under collaboration.

- This tool will be used by Fusion community (EFDA, ITM, ...)

 AVAILABLE FOR OTHER COMMUNITIES.
- The results of the workflow here presented published in:
- Á. Cappa, D. López-Bruna, F. Castejón, et al. "Calculated evolution of the Electron Bernstein Wave heating deposition profile under NBI conditions in TJ-II plasmas" Contributions to Plasma Physics, 2010.

Distributed Asynchronous Bees (DAB)

- Metaheuristics: Artificial Bee Colony Algorithm and VMEC (Variational Moment Equilibrium Code)
- VMEC, 3D Equilibrium code, Ported to the grid: Capable of modelling 3Dtokamaks and stellarators. A configuration, given by Fourier representation of magnetic field and pressure profile, estimated on a single node.
- Target functions to optimise:
 - 0) Equilibrium itself (must exist).
 - 1) NC Transport.
 - 2) Mercier Criterion Stability. (VMEC 8.46).
 - 3) Ballooning Criterium (COBRA code on the grid).

Consortium Members

Country	Institute	Capabilities
SWEDEN:	CHALMERS University of Technology (coordinating)	Fusion, Grid, (CS)
FINLAND:	CSC - Tieteellinen laskenta Oy	HPC, (Grid),
	Åbo Akademi University	Code Optimization, CS
FRANCE:	CEA - Commissariat à l'énergie atomique – Cadarache	Workflow, Fusion, CS
	Université Louis Pasteur	Visualization, Applied Math
GERMANY:	Forschungszentrum Karlsruhe GmbH -FZK	Grid, Code parallelisation
	Max-Planck-Institut für Plasmaphysik - IPP	Fusion, (HPC, Grid)
ITALY:	ENEA	Fusion, Grid, HPC, GATEWAY
SLOVENIA:	University of Ljubljana -LECAD	Visualization, CS
POLAND:	Poznan Supercomputing and Networking Centre	Grid, Migrating Desktop, CS
SPAIN:	Barcelona Supercomputing Center – Centro Nacional de Supercomputación -BSC	HPC, Code optimization
	Centro de Investigaciones Energéticas Medio Ambientales y Tecnológicas -CIEMAT	Grid, Code parallelization, Fusion, Grid, NA
	Consejo Superior de Investigaciones Cientificas - CSIC	Grid, CS, (NA activities)
UNITED KINGDOM:	The University of Edinburgh - EPCC	HPC, Code Optimization, NA, User support, (GRID)

2009-06

Grids and e-Science 2009

