BDA needs for the Earth Observation Science Community

EGI GOSC workshop session 2 - 3 November 2020

Guido Lemoine, European Commission, Joint Research Centre
Earth Observation (EO) science is undergoing a **paradigm change**

- Open access to high quality EO data from EU Copernicus Sentinels, US Landsat (soon NISAR), Japanese ALOS, Chinese Gaofen, etc.
- At data rates of multiple TBs/day, Petabyte-scale annual archives
- **Big Data Analytics** (BDA) required, based on modern machine and deep learning techniques, coupled with more complex physical models, at higher spatial, temporal and hybrid radiometric resolutions.
- Integrating richer reference and validation data

Enabling discovery at scale in natural and social science domains beyond the traditional remote sensing and spatial analysis disciplines
Core requirements

• EO science use patterns are diverse, from local to global monitoring, but increasingly towards global applicability (e.g. SDGs)
• The key requirement is permanent open access to full archives (data curation)
• Sensor data as **Application Ready Data** (not the case for Sentinel-1)
• If full archive is distributed, **high connectivity** and **smart caching** and **prediction** is needed
• Global upscaling implies use of massively parallel cloud resources
• Processing needs imply use of special hardware solutions (e.g. GPU)
• Distributed processing prescribes Open Source solutions
Setting a European benchmark for continental scale crop type mapping with machine learning

EU 2018 crop map at 10m pixel spacing. Masked with non-vegetation Corine Land Cover classes.
JRC Global Human Settlement Layer (S2 version) combined with JRC Global Surface Water layer (v 1.2)
Google Earth Engine is the *de facto* standard
Not an open cloud infrastructure, but free for science use
Especially the [interface to] massively parallel application of rich data analytics is unmatched by other cloud infrastructures.

EU Copernicus DIAS offer IaaS closely coupled to a multiple Petabytes S3 archive (publicly financed until end of 2021)
Some DIAS instances and smaller equivalents are federated in the European Open Science Cloud
Familiarity and technical expertise to scale EO science use on open cloud solutions is still scarce.
Outlook (1)

- In Europe the **Digital Europe** agenda is shaping up as the key initiative for a federated European Open Science Cloud.
- **Destination Earth** has specific relevance for the EO science domain.
- Extends to “European Data Spaces” to unlock thematic potential.
- Scale **DOES** matter. Current open cloud landscape very fragmented, e.g. per application domain, national initiatives.
- Consolidation through coordination of funding streams (project compute requirements as in-kind open science cloud credits).
Outlook (2)

- Europe has state-of-the-art Open Source geospatial expertise
- Increasingly in applied machine/deep learning, with rich reference data
- More efforts needed to promote cloud solutions in EO research

- Portable/Scalable to other continental open science cloud initiatives
- To accommodate additional open data streams, globally distributed archives, unlock validation and reference data, stimulate Open Science
- Little time left to be ready for upcoming open data streams, novel commercial data access mechanisms
Thank you

guido.lemoine@ec.europa.eu