Fusion experience

Combined used of HPC, Cloud and HTC systems

Andrew Lahiff

Culham Centre for Fusion Energy, UK Atomic Energy Authority

eosc-hub.eu Dissemination level: Public

@EOSC_eu
Computing in fusion

- Wide variety of applications
 - Plasma modelling, materials research, engineering, data processing, uncertainty quantification, rendering, machine learning, …
- Wide variety of languages & compilers
 - FORTRAN, C, C++, Python, IDL, Matlab, …
 - GNU, Intel, PGI
- Extensive use of environment modules & pre-installed software
 - Makefiles for specific HPC clusters
- Most computing in fusion is run on HPC facilities
 - At CCFE over 90% of jobs run locally are HPC
 - However expected that HTC will increase over the coming years
● PROMINENCE allows users to run batch jobs opportunistically & transparently across any number of clouds
 ○ Used in production for several use cases at CCFE
Many users have access to multiple HPC systems
 ○ Typically manually “schedule” & submit jobs across them
Some fusion workflows involve both HPC & HTC steps
It would be useful if PROMINENCE could support HPC batch systems in addition to clouds
 ○ HPC batch systems more common than clouds with low-latency networking

DAG workflow with steps running across multiple clouds and an HPC cluster
● PROMINENCE internally uses HTCondor as the job queue & to remotely execute jobs anywhere
● Use HTCondor job router to convert vanilla universe jobs into Grid universe
 ○ Leverage BOSCO functionality for submission to a remote batch system over ssh

http://htcondor.org
Integration with HPC: version 1

- PROMINENCE internally uses HTCondor as the job queue & to remotely execute jobs anywhere
- Use HTCondor job router to convert vanilla universe jobs into Grid universe
 - Leverage BOSCO functionality for submission to a remote batch system over ssh

This method works reliably

Limitations
- Loss of functionality because jobs are not being run by a HTCondor startd
- E.g. lose the ability for users to view job stdout/err in real time
- Submit HTCondor startds (worker nodes) to the HPC system
 - Much more consistent with how we run jobs on clouds
 - Supports streaming of stdout/err in real time
- Could use HTCondor to submit the startds to the HPC system
 - But we used RADICAL-SAGA (simpler)
 - Python module which can submit jobs over ssh
Integration with HPC: version 2

- Submit HTCondor startds (worker nodes) to the HPC system
 - Much more consistent with how we run jobs on clouds
 - Supports streaming of stdout/err in real time
- Could use HTCondor to submit the startds to the HPC system
 - But we used RADICAL-SAGA (simpler)
 - Python module which can submit jobs over ssh

This method also works reliably

Potential limitations
- Assumes that there is outgoing network access from the worker nodes, including port 9618
Running containerised multi-node MPI jobs using low-latency interconnects

HPC systems generally now have Singularity installed
- If not, udocker can be used

Only use MPI inside the container
- MPI on the host is not used at all
- Avoids issues with MPI version conflicts

Works with OpenMPI, Intel MPI, MPICH
Challenges

- MPI, low-latency interconnects & containers
 - Installing/configuring MPI etc in the container so that InfiniBand works is not easy
 - Creating a single image which works on multiple HPC clusters is even more difficult
 - Maybe going back to using MPI on the host is the simplest solution?
 - If necessary jobs can be matched to HPC clusters supporting the appropriate MPI version/flavour

- Access to data
 - OneData & WebDAV clients don’t work on the worker nodes on many HPC systems
 - Access to data via staging-in/out from object storage does work (curl!)

- The hard bit: non-technical issues
 - We’re using a single user account on the HPC system for multiple users in PROMINENCE
 - Some (most/all?) HPC clusters have strict terms of use & policies regarding storage of ssh keys
 - Can any platform supporting multiple users to be allowed to submit jobs?
 - Effect of multi-factor authentication
Thank you for your attention!

Questions?

Contact
eosc-hub.eu @EOSC_eu

This material by Parties of the EOSC-hub Consortium is licensed under a Creative Commons Attribution 4.0 International License.