
DIRAC Services for EGI
Users

A.Tsaregorodtsev,

Aix Marseille Univ, CNRS/IN2P3, CPPM

EGI Webinar, 23 October 2020

Outline

2

} DIRAC Interware project
} EGI Services

} Managing jobs
} Managing data
} Managing computing resources
} Managing workflows

} Development Framework
} Conclusions

Interware

● A software framework for distributed computing
● A complete solution to one (or more) user community
● Builds a layer between users and resources
● A framework shared by multiple experiments, both

inside HEP, astronomy, and life sciences

An open source project

● Started as an LHCb project, became experiment-
agnostic in 2009
○ First users (after LHCb) end of 2009

● Developed by communities, for communities
○ Open source (GPL3+), GitHub hosted, python 2.7
○ No dedicated funding for the development of the “Vanilla” project
○ Publicly documented, active assistance forum, yearly users workshops, open

developers meetings
○ 4 FTE as core developers, a dozen contributing developers

● The DIRAC consortium as representing body
● CNRS, CERN, IHEP, KEK
● PNNL, University of Montpellier, Imperial College

https://github.com/DIRACGrid
http://dirac.readthedocs.io/en/latest/index.html
https://groups.google.com/forum/%23!forum/diracgrid-forum
https://indico.cern.ch/event/477578/overview
http://indico.cern.ch/category/4205/

Managing user jobs

5

WMS: Pilots are federators

6

} Pilot jobs are submitted to computing
resources by specialized Pilot
Directors

} Pilots retrieve user jobs from the
central Task Queue and steer their
execution on the worker nodes
including final data uploading

} Pilot based WMS advantages:
} increases efficiency of the user job

execution
} allows to apply efficiently community

policies at the Task Queue level
} allows to integrate heterogeneous

computing resources

User jobs

7

} Users are managing jobs using various tools
} Command line (batch system like interface):

} Python API

DIRAC client

8

} Several methods to install DIRAC client on user
workstations/laptops (Linux flavors)
} dirac-install installer tool

} Rather tedious (see tutorials)
} Suitable for various flavors of Linux

} Docker container (Linux, MacOS)
} docker run -it -v $HOME:$HOME -e HOME=$HOME diracgrid/client:egi

} CVMFS client installation (Linux)
} source /cvmfs/dirac.egi.eu/dirac/bashrc_egi

} Conda environment (Linux, MacOS)
} conda create -c conda-forge --name dirac ipython dirac-grid

conda activate dirac

Web Interface

9

Job Launchpad

Job Monitoring

Other job interfaces

10

} REST API
} A language neutral interface for job manipulation

} The next generation DIRAC service interface will be based on
HTTPS
} Will allow for a language neutral RPC interface

} Jupyter Notebook interface
} Soon availalbe

} DIRAC API enabled iPython shell
} Terminal with DIRAC command

line interface
} Managing user credentials is being

sorted out
} Functional for users having grid

certificates and registered in the Check-In
SSO service

Bulk jobs with
multiple parameters

Executable = "testParametricJob.sh";
JobName = ”Parametric_%{Name}";
Arguments = "%{Energy}";
Parameters = 3;
Parameter.Energy = {0.1, 0.2, 0.3};
Parameter.Name = {“Good”, “Better”, “Best”};
StdOutput = "StdOut_%j";
StdError = "StdErr_%j";
InputSandbox = {"testJob.sh"};
OutputSandbox = {"StdOut_%j","StdErr_%j"};

11

} Example JDL

} Bulk job submission is possible with all the
interfaces
} Most suitable for APIs

Managing user computing resources

12

DIRAC4EGI activity
snapshot

Computing Grids and Clouds

13

} DIRAC was initially developed with the focus on
accessing conventional Grid computing resources
} WLCG grid resources for the LHCb Collaboration

} Grid infrastructures
} E.g. EGI, WLCG, OSG
} CREAM, HTCondorCE, ARC

} Cloud infrastructures
} EGI Federated Cloud, France-Grilles cloud

} Others
} Vacuum, Volunteer grids

Standalone computing clusters

14

} Users can connect their own
computing resources
} Not making part of any grid

infrastructure

} The user site can be:
} a single computer or several

computers without any batch
system

} a computing cluster with a batch
system
} LSF, BQS, SGE, PBS/Torque,

Condor
¨ Commodity computer farms

} SLURM
¨ HPC centers

Managing user data

15

DMS basics

16

} LFN: unique identifier within DIRAC of a file
} Logical File Name
} (described as paths)

} LFNs are registered in catalog(s).
} and there are implementations like the DFC

} and you can connect as many catalogs as you want
¨ (including the LFC or Rucio catalog)

} LFNs may have PFNs, stored in SEs.
} Physical File Name on Storage Elements

} PFNs can be accessed with several protocols.
} e.g. root, gsiftp, srm, http, file, dips
} (and can also be brought online - i.e. staged)

Storage plugins

17

} Storage element abstraction with a client implementation for each
access protocol
} DIPS – DIRAC data transfer protocol
} FTP, HTTP, WebDAV
} SRM, XROOTD, RFIO, DCAP, etc

} HEP centers specific protocols
} Using gfal2 library developed at CERN

} S3, Swift, CDMI: cloud specific data access
protocols

} Each SE is seen by users as a
logical entity
} With some specific operational properties

} Archive, limited access, etc

} SE’s can be configured with multiple protocols

} New data access technologies
require creating new specific plug-ins

File Catalog Service

18

} File Catalog is a service to keep track of all the physical
file replicas in all the SE’s
} Stores also file properties:

} Size, creation/modification time stamps, ownership, checksums
} User ACLs

} DIRAC relies on a central File Catalog
} Defines a single logical name space for all the managed data
} Organizes files hierarchically like in common file systems

Combined data API

19

} Together with the data access components DFC
allows to present data to users as a single global
file system

} DataManager API is a single client interface for
logical data operations

File Catalog: Metadata

20

} DFC is Replica and
Metadata Catalog
} User defined metadata
} The same hierarchy for

metadata as for the
logical name space
} Metadata associated

with files and directories
} Allow for efficient searches

} Efficient Storage Usage
reports
} Suitable for user quotas

} Example query:
} find /lhcb/mcdata LastAccess < 01-01-2012
GaussVersion=v1,v2 SE=IN2P3,CERN Name=*.raw

Integrating user storages

21

} Deploying a DIRAC Storage Element service in front
of a user File Server
} Needs minimal DIRAC installation on the server

} Plus adding a record to the Configuration Service

} Files should be registered in the DIRAC File Catalog
} dirac-dms-register-directory tool

¨ keeping file hierarchical namespace
¨ registering file checksums

} The SE will be accessible with the user credentials and ACL
defined in the File Catalog

} Example: Eiscat-disk Storage Element
} With 117M files registered in a dedicated File Catalog

DM user interfaces

22

} Command line tools
} Multiple dirac-dms-… commands
} File Catalog console (dirac-dms-filecatalog-CLI)
} https://dirac.readthedocs.io/en/latest/UserGuide/commands.html

} COMDIRAC
} Representing the logical DIRAC file namespace as a parallel shell

} dls, dcd, dpwd, dfind, ddu, etc commands
} Commands for file upload/download/replication

} dput, dget, drepl

File Catalog Web interface

23

Managing workflows

24

Massive operations

25

} DIRAC can deal with large numbers of jobs
} > 100K simultaneously running jobs
} > 10M jobs in the WMS

} DIRAC can deal with large volumes of scientific data
} 10’s of Petabytes
} 107-108 of files and directories

} There is a need for massive (bulk) operations
} Examples:

} Submit and monitor 50K jobs
} Replicate 105 files from SE A to SE B
} Remove 105 files and all their replicas in all the storages

} Massive operations supported
} Asynchronous execution
} Automatic failure recovery
} Data integrity checking
} Automated data driven workflows

Transformation System
for data driven workflows

26

} Data driven workflows as chains of data transformations
} Transformation: input data filter + recipe to create tasks
} Tasks are created as soon as data with required properties is registered

into the system
} Tasks:

} Jobs submission
} Data replication, removal
} etc

} Transformations can be
used for automatic data
driven bulk data
operations
} Scheduling RMS tasks
} Often as part of a more

general workflow

DIRAC Framework

27

DIRAC Framework

28

¿DIRAC systems consist of well defined components
with clear recipes for developing
öServices

} passive components reacting to client request
} Keep their state in a database

öAgents
} Light permanently running distributed components, animating the

whole system

öClients
} Used in user interfaces as well as in agent-service, service-service

communications

DIRAC Framework

29

¿The Framework allows to easily build these
components concentrating on the business logic of
the applications
¿ Development environment: Python, MySQL
¿ Using framework services (configuration, service discovery,

access control, etc)
¿ Specific functionality can be provided in many cases as

plugin modules, e.g.
¿ Data access policies
¿ Job scheduling policies

Extending DIRAC

30

} Adding new general or community specific functionalities
} Or overriding existing algorithms

} Tools for extensions packaging and deployment
} Example extensions in the EGI DIRAC installation

} EiscatDIRAC: File Catalog with custom file ACLs
} EscapeDIRAC: Corsica application portal

DIRAC is evolving

31

} Several ongoing developments
} dips:// → https://

} dips: proprietary DIRAC protocol for RPC calls
} http(s): frameworks already exists in python 2&3 for server-side

(tornado framework) and client side (requests Python module)

} Python 3
} Migration started, first production release next year

¨ DIRAC client in Python 3 available before

} DIRAC ←→ Rucio bridge
} Development in the context of Belle II and SKA collaborations

SSO solutions

32

} There are multiple examples
of SSO solutions

} The EGI Check-in service
enables access to EGI
services and resources using
federated authentication
mechanisms
} A hub between federated Identity

Providers (IdPs) and Service
Providers (SPs) that are part of
EGI

Oauth/OIDC Authentication

33

Web Portal
functional prototype

Command Line
functional prototype

Conclusions

34

} Large scientific communities have to employ various
geographically distributed computing and storage resources

} DIRAC provides a framework for building distributed
computing systems aggregating multiple types of resources

} DIRAC provides an integrated solution with a reach set of
ready to use services for managing computing resources,
application workloads and data

} DIRAC modular architecture allows for extending the existing
functionality to build high level services specific for particular
user communities and architectures

http://diracgrid.org

Acknowledgement

35

This work is co-funded by EGI and the EOSC-hub
project (Horizon 2020) under Grant number 777536

https://www.eosc-hub.eu/

Useful links

36

} DIRAC Project site: http://diracgrid.org

} Guides: https://dirac.readthedocs.io/en/latest/

} Tutorials:
https://github.com/DIRACGrid/DIRAC/wiki/DIRAC
-Tutorials

http://diracgrid.org/
https://dirac.readthedocs.io/en/latest/
https://github.com/DIRACGrid/DIRAC/wiki/DIRAC-Tutorials

