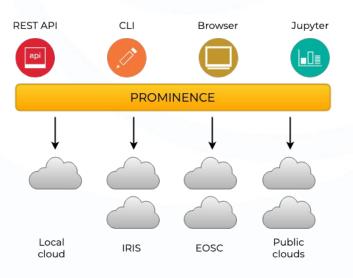


Fusion Competence Centre

Andrew Lahiff, Stanislas Pamela

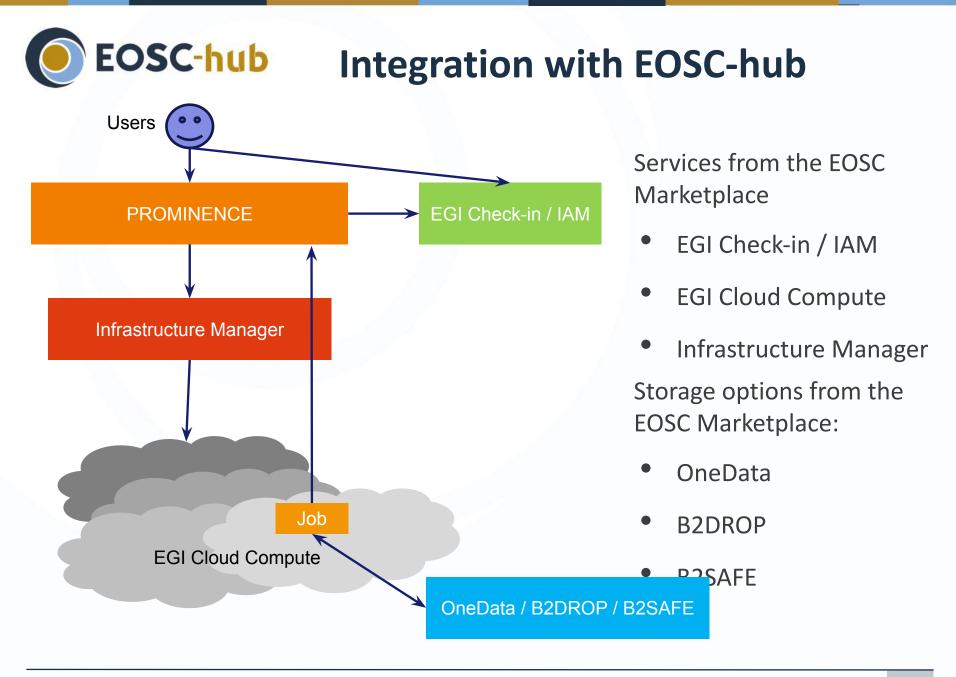
Dissemination level: Public Disclosing Party: Project consortium Recipient Party: European Commission

EOSC-hub receives funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 777536.


EOSC-hub

Scientific community

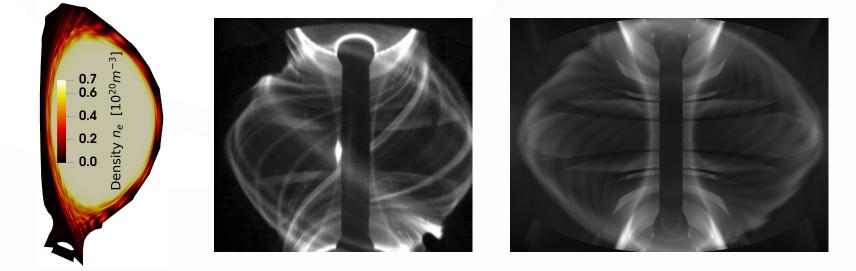
- Nuclear fusion
 - Energy source of the Sun and stars
 - Light nuclei fusing together to form a heavier nucleus release energy
- Recreating nuclear fusion on Earth
 - Typically heat deuterium and tritium to over 100 million degrees Celsius
 - Eventual aim to use the energy created to generate electricity
- Many challenges to overcome, including:
 - Improving our understanding of plasma stability
 - Design & development of materials able to withstand the hostile environment in nuclear fusion reactors
 - High-fidelity modelling of actual nuclear fusion plant infrastructure
- These challenges all require a significant amount of computing


- PROMINENCE allows users to transparently run jobs across any number of clouds opportunistically
 - Jobs are automatically directed to the most appropriate clouds
 - All jobs run in containers for reliability & reproducibility

Run jobs across many clouds

Run workflows across multiple clouds

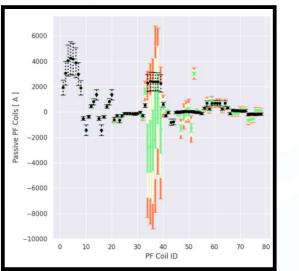
- Distributed computing does not exist in the Fusion energy research community
- PROMINENCE allows users to gain access to additional resources
 - Increasing computing resource requirements mean that local resources are more likely to be full
 - A single point of access to global heterogeneous resources
 - Applications can be built once then run anywhere
- Important to be able to leverage cloud resources
 - Clouds are increasingly becoming the standard way of deploying computing infrastructure
 - Computing allocations are increasingly in the form of clouds

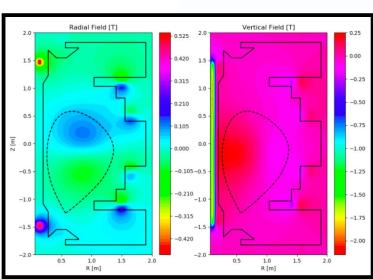

Multiphysics analysis with CAD based parametric breeding blanket creation for rapid design iteration

Jonathan Shimwell¹, Rémi Delaporte-Mathurin² Jean-Charles Jaboulay³, Julien Aubert³, Chris Richardson⁴, Chris Bowman⁵, Andrew Davis¹, Andrew Lahiff¹, Jamie Bernardi⁶, Sikander Yasin^{7,5}, Xiaoying Tang^{7,9} optimizing tritium production, using 3D CAD based neutronics models s of papers which would have been delayed by e & access to cloud computing resources

EOSC-hub

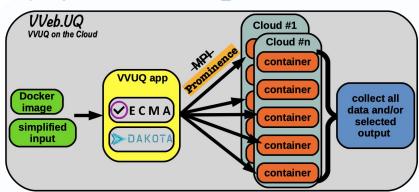
Example scientific use case: VVUQ


- Application: HPC modelling
- Nonlinear MHD instabilities (JOREK <u>https://jorek.eu</u>)
 - Code validation
 - Generating databases for machine learning
 - Inverse rendering of experimental images



Example scientific use case: VVUQ

- Application: Data Analysis
- Data analysis of Tokamak experiments
 - Magnetic configuration of plasmas
 - Error propagation from measurements



Demonstration of VVeb.UQ

• VVUQ on the cloud

EOSC-hub

- Simple input: Docker image + data & errors
- VVUQ software
 DAKOTA <u>https://dakota.sandia.gov/quickstart.html</u>
 ECMA <u>https://easyvvuq.readthedocs.io/en/latest/basic_tutorial.html</u>
- Cloud deployment: PROMINENCE
- Check progress of jobs
- Collect output upon completion

https://github.com/ukaea/ALC_UQ/tree/master/VVeb.UQ

Thank you for your attention!

Questions?

EOSC-hub

This material by Parties of the EOSC-Hub Consortium is licensed under a Creative Common Attribution 4.0 International License