

Fusion Data Space Provider

Andrew Lahiff

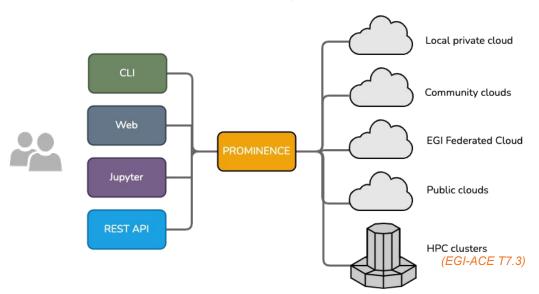
UK Atomic Energy Authority

EGI Conference 2021

Dissemination level: Public

Disclosing Party: UKAEA

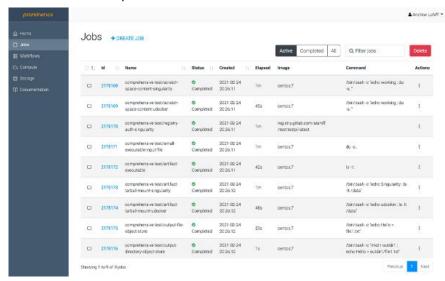
Recipient Party: EGI-ACE Project



Introduction to PROMINENCE

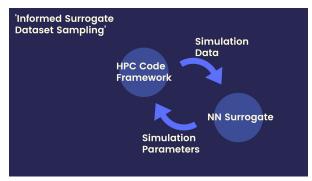
Submit globally, run globally

- Platform allowing users to run batch jobs/workflows across multiple clouds
 - Appears like a traditional batch system to users
 - Users don't need to worry about provisioning clusters or dealing with infrastructure
 - Jobs are directed automatically to the appropriate resources


Introduction to PROMINENCE

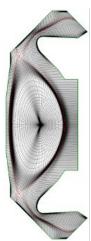
Submit globally, run globally

Installing the CLI pip install prominence-cli Running a job prominence create --cpus 8 --memory 16 alahiff/lammps-intel-avx512-2018 \ Listing jobs prominence list jobs View stdout/err in real time prominence stdout <job id>

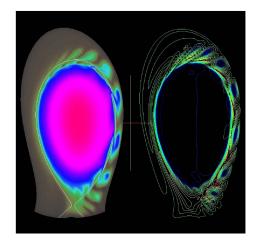

GUI under development

EGI-ACE use case

- Building NN-based surrogate models in an efficient & effective manner
 - Traditional approach involves arbitrary scans across a range of parameters
 - May be unaware of more complex behaviour & nuances
- An alternative approach to overcome these difficulties
 - Physics-informed neural network
 - Cyclic workflow:
 - Gaps in knowledge identified
 - Trigger the simulation code to generate additional data points



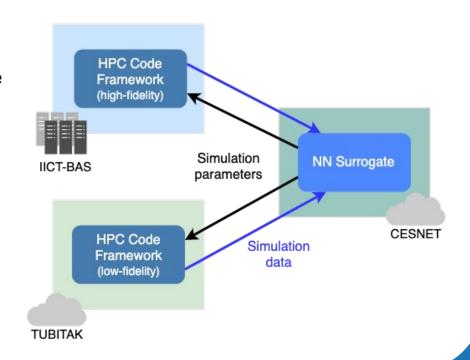
Building NN-based surrogate models


EGI-ACE use case

- Fusion example: JOREK
 - Simulation of MHD instabilities at the edge of Tokamak plasmas
 - Filamentary structures ejected from the edge
 - Dynamics highly dependent on edge plasma pressure

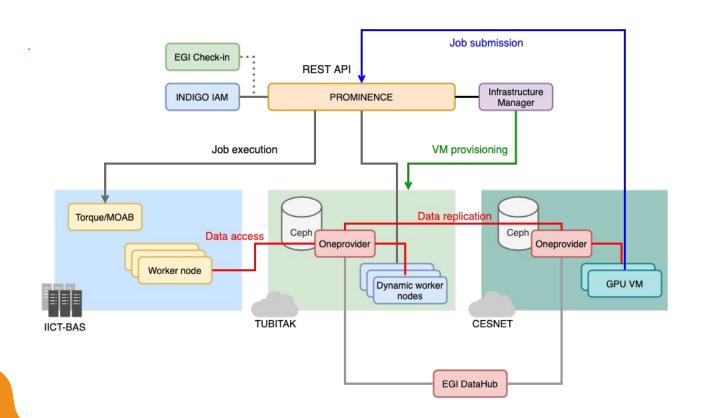
Use case mapped onto resources

JOREK is a HPC code


- For high-fidelity, requires large numbers of CPUs with low-latency interconnects
- On typical clouds jobs limited to a single node
 - Limits fidelity
 - Limits physics

Compute

- HPC at IICT-BAS
- Cloud (CPUs) at TUBITAK
- Cloud (GPUs) at CESNET


Storage

- o 50 TB TUBITAK
- o 10 TB CESNET
- Access via OneData

Architecture

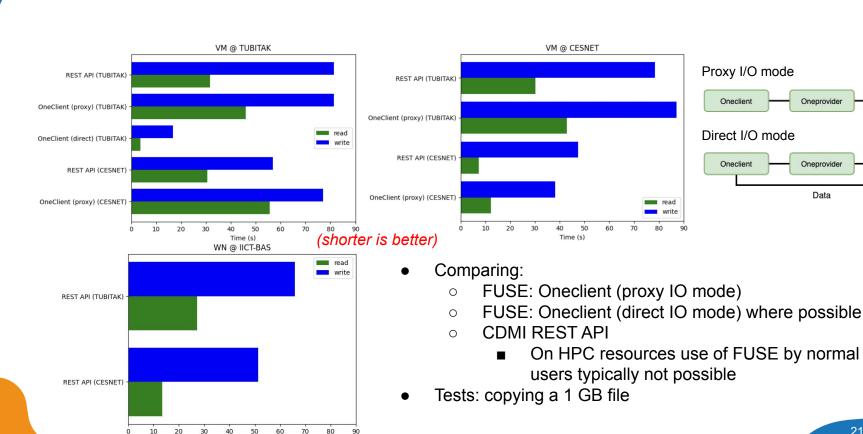
Accessing software

- In PROMINENCE all jobs run in containers
 - Container runtime
 - PROMINENCE supports Singularity & udocker
 - udocker very useful
 - Singularity not installed on some HPC systems (e.g. AVITOHOL at IICT-BAS)
 - udocker can be installed by unprivileged users
- Portability vs performance
 - Containers do not guarantee portability when codes are optimised for specific architectures
 - Typically building images on Intel Skylake (or newer)
 - Our EGI-ACE resources:

■ TUBITAK: AMD Opteron 23xx

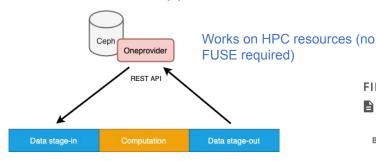
■ IICT-BAS: Intel Xeon E5-2650 v2

■ UNIV-LILLE: Intel Westmere


Data access & performance

Time (s)

Storage


Storage

Accessing & finding data

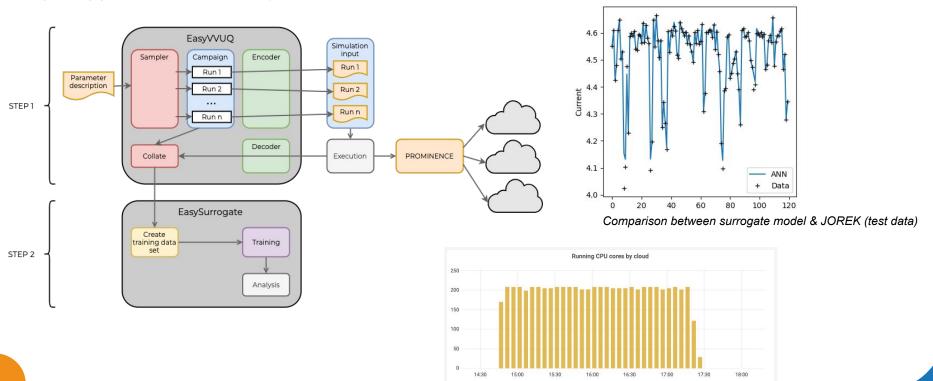
- Data access in PROMINENCE
 - Jobs can mount OneData/WebDAV storage at specified location
 - For OneData can use GeoIP to find nearest provider if necessary
 - Stage-in & stage-out specified input & output files to object storage
 - Modified to support OneData REST API as well (previously only S3)

- Custom meta data in OneData
 - JSON documents can be attached to files

FILE METADATA

Distributed data

- Three options available for dealing with the two storage systems
 - OneData can automatically transfer files as necessary on the fly
 - Use QoS to specify replication rules
 - Trigger bulk replication of data when needed
- Example: replication of 16368 low-fidelity JOREK runs from TUBITAK to CESNET



Basic proof of concept

(Very) simple surrogate model of JOREK using VECMA

400 JOREK runs executed by PROMINENCE at TUBITAK

Future plans

- JOREK portability & performance
 - Compile JOREK for best performance & portability
 - Get JOREK to run successfully on IICT-BAS
- Production & curation of initial JOREK dataset for NN training
- Development of initial surrogate model
- Metrics & methods for identifying knowledge gaps in models

Thank you!

Contact: egi-ace-po@mailman.egi.eu Website: www.egi.eu/projects/egi-ace

EGI Foundation

@EGI_eInfra

