

EGI-ACE HPC integration: Fusion use case pilot

Shaun de Witt

UK Atomic Energy Authority

Dissemination level: Public

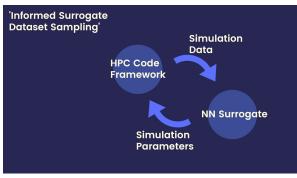
Disclosing Party: UKAEA

Recipient Party:

EGI-ACE Project

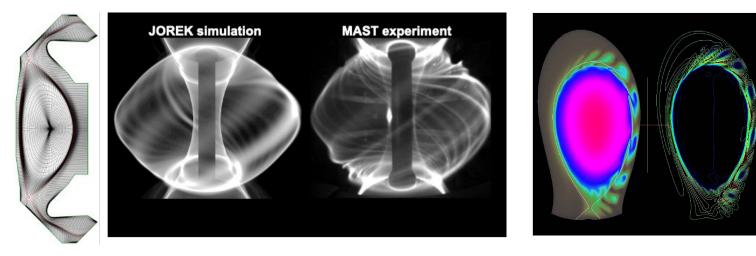
Overview

- Use case
 - Fusion Data Space Provider
 - JOREK
- Technology
 - PROMINENCE
- Requirement for HPC
- Experience integrating UK HPC



Use case

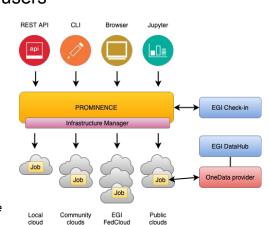
Fusion Data Space Provider


- Building NN-based surrogate models in an efficient & effective manner
 - Traditional approach involves arbitrary scans across a range of parameters
 - May be unaware of more complex behaviour & nuances
- An alternative approach to overcome these difficulties
 - Physics-informed neural network
 - Cyclic workflow:
 - Gaps in knowledge identified
 - Trigger the simulation code to generate additional data points

Use case

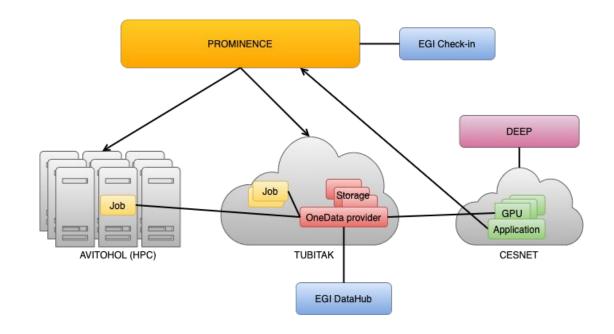
Fusion Data Space Provider

- Fusion example: JOREK
 - Simulation of MHD instabilities at the edge of Tokamak plasmas
 - Filamentary structures ejected from the edge
 - Dynamics highly dependent on edge plasma pressure



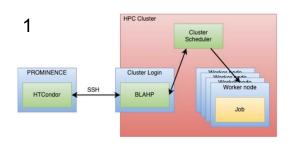
- PROMINENCE developed in EOSCpilot & extended in EOSC-hub
- Allows users to easily exploit idle cloud resources for running scientific workloads
- Submit globally
 - Manage jobs from a web UI, batch-system like CLI, or REST API
- Run globally
 - Use any number of private, academic & public clouds simultaneously
 - \circ \quad Jobs are directed automatically to the most appropriate clouds
 - Infrastructure provisioning is totally invisible to users
- Reliability & reproducibility
 - All jobs are run in containers

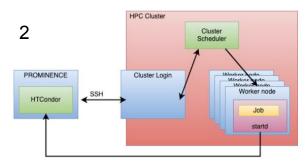
Requirement for HPC


• JOREK is a HPC code

- For high-fidelity, requires large numbers of CPUs with low-latency interconnects
- Typically each job would use hundreds/thousands of CPU cores across multiple nodes coupled using MPI
- On clouds with standard networking we are limited to using a single node
 - Significantly limits the fidelity
 - Significantly reduced physics
 - Results could not be used for publication at best this becomes a 'proof of concept'

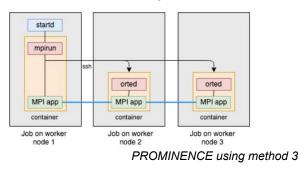
Overall architecture


• Architecture required for the Fusion Data Space provider



Experience integrating UK HPC

- PROMINENCE internally uses HTCondor as the job queue & for remotely executing jobs
- Have successfully tried two methods of integrating HPC


- Vanilla universe jobs converted into Grid universe
- Jobs submitted to remote HPC cluster over ssh
- Limitation:
 - Since jobs not run on HTCondor worker nodes, lose functionality, e.g. streaming of stdout/err in real time
- Submit HTCondor startds (worker nodes) as jobs
 Using RADICAL-SAGA Python module
- More consistent with how we run jobs on clouds
- Streaming of stdout/err in real time works

9

Experience integrating UK HPC: challenges (1)

• We run all jobs in containers

- Support both udocker and Singularity
- Different ways to run multi-node MPI jobs in containers on HPC
 - 1. MPI on host only, bind mount into containers
 - 2. Combination of MPI on host & MPI in containers
 - 3. MPI in container only
- Each have advantages & disadvantages
 - 1 & 2: need to be careful to avoid MPI version conflicts
 - 3: no version conflicts, but can be challenging to make a container which will work on multiple HPC clusters

Experience integrating UK HPC: challenges (2)

- Strict terms of use & policies regarding ssh keys
 - E.g. users can only store their ssh key on a single machine
 - Typically federated login not supported
- It is forbidden to have a single service submitting jobs on behalf of multiple users
 - Users can only:
 - Submit jobs via ssh manually
 - Have a cron which submits jobs
 - Related to accounting of resource usage

Thank you!

Contact: egi-ace-po@mailman.egi.eu Website: www.eqi.eu/projects/egi-ace

in EGI Foundation

@EGI_einfra

