
spiga@infn.it                                                 HPC4L - Training 21-22 October 2020. Beirut, Lebanon

Infrastructure as a code, 
cloud automation 

Daniele Spiga 
HPC4L - Training. Beirut, Lebanon

August 21th22th October 2020

mailto:spiga@infn.it


spiga@infn.it                                                 HPC4L - Training 21-22 October 2020. Beirut, Lebanonspiga@infn.it                                                 HPC4L - Training 21-22 October 2020. Beirut, Lebanon

Outline
Introduction: goal of the session

Definition of infrastructure

Cloud Automation ( brief intro ) 

mailto:spiga@infn.it
mailto:spiga@infn.it


spiga@infn.it                                                 HPC4L - Training 21-22 October 2020. Beirut, Lebanonspiga@infn.it                                                 HPC4L - Training 21-22 October 2020. Beirut, Lebanon

Main questions we should try to answer
In this session:

- What is the infrastructure, and
- Why I need a infrastructure on top of the Cloud

Ok, but then

- How I can generate the infrastructure
- Why the cloud helps in this context

mailto:spiga@infn.it
mailto:spiga@infn.it


spiga@infn.it                                                 HPC4L - Training 21-22 October 2020. Beirut, Lebanonspiga@infn.it                                                 HPC4L - Training 21-22 October 2020. Beirut, Lebanon

Introduction: where is my infrastructure ?
We have seen that, through a microservice architecture, we are able to write 
applications that are (or at least should be) scalable, reliable and maintainable.

However, when it comes to deploying these applications in the Cloud, we naturally 
need to find and configure the resources that are needed by the application.

For example, we need to provision the VMs where we can run our containers / 
microservices, exactly like we did when we create VM1 and VM2 on AWS.

In other words, we need to explicitly create our infrastructure.

mailto:spiga@infn.it
mailto:spiga@infn.it


spiga@infn.it                                                 HPC4L - Training 21-22 October 2020. Beirut, Lebanonspiga@infn.it                                                 HPC4L - Training 21-22 October 2020. Beirut, Lebanon

The infrastructure in this context, from 10 km ...

My definition of infrastructure, in the context of this training, is a “bunch” of 
computing resources made of:

- Storage  ( volumes… )
- Compute  ( Virtual Machines... )
- Network 

Plus a set of services such as a simple web service as well as a more complex 
environment ( see later ) 

- To be configured and deployed on top of the “bunch of 
storage/compute/network”

Resources

Services

mailto:spiga@infn.it
mailto:spiga@infn.it


spiga@infn.it                                                 HPC4L - Training 21-22 October 2020. Beirut, Lebanonspiga@infn.it                                                 HPC4L - Training 21-22 October 2020. Beirut, Lebanon

What can be a complex setup 

- Batch system 
- Big Data Platform 
- A ML training facility
- ….
- A WLCG Site : Example A CMS 

site integrated 
- A virtual CMS Site distributed 

over several clouds
- Hybrid clouds

Se
rv

ic
es

mailto:spiga@infn.it
mailto:spiga@infn.it


spiga@infn.it                                                 HPC4L - Training 21-22 October 2020. Beirut, Lebanonspiga@infn.it                                                 HPC4L - Training 21-22 October 2020. Beirut, Lebanon

About the “Resources”
Based on our definition of “infrastructure”, getting resources imply to interact with 
IaaS layer 

This can be ( over ) simplified saying that in the end what we need is some VMs  
plus some extra configuration 

- Such as Storage, networks, ports etc.. 

Ok that’s all easy. What if I need to do such operation for hundreds of 
instances, and if this is something I want to do repeatedly? 

Automation

mailto:spiga@infn.it
mailto:spiga@infn.it


spiga@infn.it                                                 HPC4L - Training 21-22 October 2020. Beirut, Lebanonspiga@infn.it                                                 HPC4L - Training 21-22 October 2020. Beirut, Lebanon

Automation and abstraction 
Creating  VMs is a rather easy operation… ok and if I need hundreds of them and 
possibly with several software and services configuration? 
Ideally one would like

- To delegate such repetitive (and error prone) operations to a service
- To avoid learning Cloud APIs for any IaaS to exploit

- As in the case of Hybrid Cloud model

Also: in order to make “easy” the exploitation of the underlying hardware, even 
specialized ( GPU, SSD etc etc… ) fabric level abstraction is a key 

- Remember what matter for users

8

mailto:spiga@infn.it
mailto:spiga@infn.it


spiga@infn.it                                                 HPC4L - Training 21-22 October 2020. Beirut, Lebanonspiga@infn.it                                                 HPC4L - Training 21-22 October 2020. Beirut, Lebanon

Our vision: Declarative approach
To focus on a declarative approach, driven by a templating engine to specify 
high-level requirements . Instead of manually setting up every server, you define a 
configuration script with all the required settings and customizations

Key points:
- Allow users to concentrate on the “What” they need to deploy rather than on 

the “How” they should deploy
- Let the underlying system to abstract providers and automatically 

instantiate and setup the computing system(s)

Also, “to do a thing once and use many times”

mailto:spiga@infn.it
mailto:spiga@infn.it


spiga@infn.it                                                 HPC4L - Training 21-22 October 2020. Beirut, Lebanonspiga@infn.it                                                 HPC4L - Training 21-22 October 2020. Beirut, Lebanon

Infrastructure as a code
With the idea of Infrastructure as Code (IaC), instead of manually creating the 
infrastructure we need for our applications (e.g. virtual machines, disk volumes, 
installations, configurations), we define what we want through 
machine-readable definition files. 

- IaC is based on the realization that “Complexity kills Productivity”: it 
therefore aims to simplify how you can realize complex infrastructures and 
set-ups.

There are many tools that allow us to combine automation with virtualization. With 
IaC, all the specifications for the infrastructure we are generating should be 
explicitly written into configuration files.

mailto:spiga@infn.it
mailto:spiga@infn.it


spiga@infn.it                                                 HPC4L - Training 21-22 October 2020. Beirut, Lebanonspiga@infn.it                                                 HPC4L - Training 21-22 October 2020. Beirut, Lebanon

About Tools
Some of the most popular tools for IaC are 

- Puppet (https://puppet.com)
- Ansible (https://www.ansible.com)
- Terraform (https://www.terraform.io)
- Chef (https://www.chef.io/chef/)
- Docker itself provides some form of IaC.

Irrespective of your preferred choice, it is important to highlight that it is 
fundamental that whatever you do with your code and data should be reproducible 
and manageable.

Today we will see this one

mailto:spiga@infn.it
mailto:spiga@infn.it
https://puppet.com
https://www.ansible.com
https://www.terraform.io
https://www.chef.io/chef/


spiga@infn.it                                                 HPC4L - Training 21-22 October 2020. Beirut, Lebanonspiga@infn.it                                                 HPC4L - Training 21-22 October 2020. Beirut, Lebanon

Why Ansible

Support use cases such as

- Remote execution 
- Configuration management 
- Deployment and Orchestration 

Ansible is 

- Simple
- Easy to write, read, maintain and 

evolve -without writing scripts or 
custom code

- Fast to learn and set up

Simple connection model: 

- No master-slave relationships
- Everything can configure everything, 

including self-config
- No custom agent to set up
- Simplest mode is push from control 

node to controlled nodes

mailto:spiga@infn.it
mailto:spiga@infn.it


spiga@infn.it                                                 HPC4L - Training 21-22 October 2020. Beirut, Lebanonspiga@infn.it                                                 HPC4L - Training 21-22 October 2020. Beirut, Lebanon

Basic concepts
Control node
Any machine with Ansible installed. Any 
computer that has a Python installation as 
a control node - laptops, shared desktops, 
and servers can all run Ansible. You can 
have multiple control nodes.

Managed nodes
The network devices (and/or servers) you 
manage with Ansible. Managed nodes are 
also sometimes called “hosts”. Ansible is 
not installed on managed nodes.

mailto:spiga@infn.it
mailto:spiga@infn.it


spiga@infn.it                                                 HPC4L - Training 21-22 October 2020. Beirut, Lebanonspiga@infn.it                                                 HPC4L - Training 21-22 October 2020. Beirut, Lebanon

Basic Concepts ( cont ) 
Inventory

- Fill description of hosts you control. Can nest groups and move hots in and out of groups

Playbook
- How Ansible orchestrates, configures and deploy systems. Ordered lists of tasks. Can also 

include variables. ( written in YAML ) 

Task
- The units of action in Ansible. You can execute a single task once with an ad-hoc command.

Modules
- The units of code that Ansible ship out to remote machine and executes
- Each module has a particular and specific use
- can invoke a single module with a task, or invoke several different modules in a playbook. 
- Once modules are executed on remote machines, they are removed ( no long running 

daemons ) 

mailto:spiga@infn.it
mailto:spiga@infn.it


spiga@infn.it                                                 HPC4L - Training 21-22 October 2020. Beirut, Lebanonspiga@infn.it                                                 HPC4L - Training 21-22 October 2020. Beirut, Lebanon

Ansible Roles
Roles are good for

- Managing the complexity: decompose complex jobs into smaller pieces
- Organizing multiple, related tasks and encapsulating data 
- Compose reusable ansible content 

Roles provide a framework for fully independent, or interdependent, collections of 
variables, tasks, files, templates, and modules. 

- The task file is the main meat of a role. If roles//tasks/main.yaml exists, all the 
tasks there in and any other files it includes will be embedded and executed. 
This allows you to split a large number of tasks into separate files, and use 
other features of task includes

mailto:spiga@infn.it
mailto:spiga@infn.it


spiga@infn.it                                                 HPC4L - Training 21-22 October 2020. Beirut, Lebanonspiga@infn.it                                                 HPC4L - Training 21-22 October 2020. Beirut, Lebanon

Roles vs Playbooks
Each role is typically limited to a particular theme or desired end result, with all the 
necessary steps to reach that result either within the role itself or in other roles 
listed as dependencies. 

Roles themselves are not playbooks. There is no way to directly execute a role. 

Roles have no setting for which host the role will apply to. 

Top-level playbooks are the glue that binds the hosts from your inventory to roles 
that should be applied to those hosts.

mailto:spiga@infn.it
mailto:spiga@infn.it


spiga@infn.it                                                 HPC4L - Training 21-22 October 2020. Beirut, Lebanonspiga@infn.it                                                 HPC4L - Training 21-22 October 2020. Beirut, Lebanon

Example: Install and configure Apache

Execute: ansible-playbook <PlayBook_Name>.yml

mailto:spiga@infn.it
mailto:spiga@infn.it


spiga@infn.it                                                 HPC4L - Training 21-22 October 2020. Beirut, Lebanonspiga@infn.it                                                 HPC4L - Training 21-22 October 2020. Beirut, Lebanon

Ansible Galaxy : Reusing roles

mailto:spiga@infn.it
mailto:spiga@infn.it


spiga@infn.it                                                 HPC4L - Training 21-22 October 2020. Beirut, Lebanonspiga@infn.it                                                 HPC4L - Training 21-22 October 2020. Beirut, Lebanon

Ok but… 
This is handy an useful, but sometimes applications need to have a higher-level 
description because they have several components. 

- All this might not be enough to implement the Declarative model we described

There are several templating mechanisms that can be used to describe and 
provision resources needed by an application in a Cloud infrastructure. 

In some sense we need a solution that allow to cover any requirements the 
applications might have and automatize the deployments in the Cloud.

mailto:spiga@infn.it
mailto:spiga@infn.it


spiga@infn.it                                                 HPC4L - Training 21-22 October 2020. Beirut, Lebanonspiga@infn.it                                                 HPC4L - Training 21-22 October 2020. Beirut, Lebanon

Example: The AWS CloudFormation
The Amazon way of defining a complete topology for an application is through the 
CloudFormation language.

mailto:spiga@infn.it
mailto:spiga@infn.it


spiga@infn.it                                                 HPC4L - Training 21-22 October 2020. Beirut, Lebanonspiga@infn.it                                                 HPC4L - Training 21-22 October 2020. Beirut, Lebanon

TOSCA

● It is an OASIS (https://www.oasis -open.org/) 
standard language to describe a topology of cloud 
-based web services, their components, 
relationships, and the processes that manage them 

● AWS CloudFormation is Amazon -specific. As such, it can only be used with AWS.
● TOSCA (Topology and Orchestration Specification for Cloud Applications) is on the 

other hand a public standard: 

● It standardizes the language to describe:
○ The structure of an IT Service (its topology model) . 
○ How to orchestrate operational behavior (plans such 

as build, deploy, patch, shutdown, etc.) . 
○ A declarative model that spans applications, virtual 

and physical infrastructures.

mailto:spiga@infn.it
mailto:spiga@infn.it


spiga@infn.it                                                 HPC4L - Training 21-22 October 2020. Beirut, Lebanonspiga@infn.it                                                 HPC4L - Training 21-22 October 2020. Beirut, Lebanon

mailto:spiga@infn.it
mailto:spiga@infn.it


spiga@infn.it                                                 HPC4L - Training 21-22 October 2020. Beirut, Lebanonspiga@infn.it                                                 HPC4L - Training 21-22 October 2020. Beirut, Lebanon

Key modelling concepts 
Topology 
TOSCA is used first and foremost to describe the topology of the deployment view for cloud 
applications and services

Composition 
Abstract nodes in one TOSCA topology can be substituted with another topology

Portability 
TOSCA applications are portable to different Cloud infrastructures Application

Lifecycle 
TOSCA models have a consistent view of state-based lifecycle  have Operations 
(implementations) that can be sequenced against state of any dependent resources

mailto:spiga@infn.it
mailto:spiga@infn.it


spiga@infn.it                                                 HPC4L - Training 21-22 October 2020. Beirut, Lebanonspiga@infn.it                                                 HPC4L - Training 21-22 October 2020. Beirut, Lebanon

Tosca Topology
● Components in the topology are called Nodes 

● Each Node has a Type (e.g. Host, DB, Web server). 
○ The Type is abstract and hence portable 
○ The Type defines Properties and Interfaces 

● An Interface is a set of hooks (named Operations) 

● Nodes are connected to one another using Relationships 

● Both Node Types and Relationship Types can be derived 

mailto:spiga@infn.it
mailto:spiga@infn.it


spiga@infn.it                                                 HPC4L - Training 21-22 October 2020. Beirut, Lebanonspiga@infn.it                                                 HPC4L - Training 21-22 October 2020. Beirut, Lebanon

Node Template
- An instance of a type 
- Has specific properties
- Has artifacts:

- What to install
- How to install

- Has requirements and capabilities ( or relationship )
- The basic relationship types are: 

- dependsOn – abstract type and its sub types: 
- hostedOn – a node is contained within another 
- connectsTo – a node has a connection configured to another 

mailto:spiga@infn.it
mailto:spiga@infn.it


spiga@infn.it                                                 HPC4L - Training 21-22 October 2020. Beirut, Lebanonspiga@infn.it                                                 HPC4L - Training 21-22 October 2020. Beirut, Lebanon

Custom Types
TOSCA is highly versatile 

• It’s possible to define custom types for nodes, 
relationships, and capabilities —> can be used in 
different domains

• indigo custom types: 

- https://github.com/indigo-dc/tosca-types

mailto:spiga@infn.it
mailto:spiga@infn.it
https://github.com/indigo-dc/tosca-types


spiga@infn.it                                                 HPC4L - Training 21-22 October 2020. Beirut, Lebanonspiga@infn.it                                                 HPC4L - Training 21-22 October 2020. Beirut, Lebanon

Ok, but question now is: 
How does Ansible fits with TOSCA ? 

- Should I combine the two? 
- And how ? 
- Is there a smart way to use both? E.g. TOSCA define topology and 

relationship while Ansible configure software services, dependencies ( e.g. 
“contextualize” ) ? 

mailto:spiga@infn.it
mailto:spiga@infn.it


spiga@infn.it                                                 HPC4L - Training 21-22 October 2020. Beirut, Lebanonspiga@infn.it                                                 HPC4L - Training 21-22 October 2020. Beirut, Lebanon

Custom Type 
● Galaxy Ansible roles defined as artifacts are automatically installed

mailto:spiga@infn.it
mailto:spiga@infn.it


spiga@infn.it                                                 HPC4L - Training 21-22 October 2020. Beirut, Lebanonspiga@infn.it                                                 HPC4L - Training 21-22 October 2020. Beirut, Lebanon

Example 1

mailto:spiga@infn.it
mailto:spiga@infn.it


spiga@infn.it                                                 HPC4L - Training 21-22 October 2020. Beirut, Lebanonspiga@infn.it                                                 HPC4L - Training 21-22 October 2020. Beirut, Lebanon

Example 2 

mailto:spiga@infn.it
mailto:spiga@infn.it


spiga@infn.it                                                 HPC4L - Training 21-22 October 2020. Beirut, Lebanonspiga@infn.it                                                 HPC4L - Training 21-22 October 2020. Beirut, Lebanon

What can we do in practice with these stuff
TOSCA and other template-driven orchestration mechanisms allow us to realize 
service composition, i.e. to combine different services to implement complex 
topologies. 

• An example of service composition developed within INFN is DODAS 
(Dynamic On-Demand Analysis Service), where we facilitate the deployment 
of relatively complex set-ups on any cloud provider with almost zero effort.

mailto:spiga@infn.it
mailto:spiga@infn.it

