
spiga@infn.it HPC4L - Training 21-22 October 2020. Beirut, Lebanon

Containers Orchestration

1

Daniele Spiga
HPC4L - Training. Beirut, Lebanon

August 21th22th October 2020

mailto:spiga@infn.it

spiga@infn.it HPC4L - Training 21-22 October 2020. Beirut, Lebanon

Outline
Introduction of the problem

Containers Orchestration

- Overview of the major solutions

Wrap-up

2

mailto:spiga@infn.it

spiga@infn.it HPC4L - Training 21-22 October 2020. Beirut, Lebanon

Introduction
➢ We explored how containers help us to easily create applications that are – as the

name says – self-contained.

➢ We discussed microservices and explored a bit the docker-compose

➢ What we need then? we’d explore how to effectively orchestrate many containers
across distributed hosts.

○ container orchestration.

3

mailto:spiga@infn.it

spiga@infn.it HPC4L - Training 21-22 October 2020. Beirut, Lebanon

Three current major solutions

Docker swarm - Apache Mesos - Kubernetes

4

mailto:spiga@infn.it

spiga@infn.it HPC4L - Training 21-22 October 2020. Beirut, Lebanon

Docker swarm
Docker Swarm is the traditional way of orchestrating containers with
Docker. Compared to other methods we’ll see later, it is relatively easy to use.
Its main features are:

● Cluster management integrated with Docker Engine: no other software than
docker is needed.

● Decentralized design: this means that any node in a Docker Swarm can assume
any role at runtime.

● Scaling: the Swarm manager can automatically scale up and down services,
adding or removing tasks.

● Desired state reconciliation: if something happens to a Swarm cluster (e.g.
some containers crash), the Swarm manager will try to reconcile the state of the
cluster to its desired state (e.g. bringing up some more containers).

5

mailto:spiga@infn.it

spiga@infn.it HPC4L - Training 21-22 October 2020. Beirut, Lebanon

Docker Swarm (cont)
Docker Swarm features, continued:

● Multi-host networking: the Swarm manager can handle an overlay network
spanning your services.

● Service discovery: there is a DNS server embedded in each Swarm. The Swarm
manager discovers services and assigns to each of them a unique DNS name.

● Load balancing: you can specify how to distribute services among nodes.
● Secure by default: the communication among all nodes in a Swarm cluster is

protected by the cryptographic protocol called TLS (Transport Layer Security).
● Rolling updates: if anything goes wrong, you can roll-back a task to a previous

version of the service.

6

mailto:spiga@infn.it

spiga@infn.it HPC4L - Training 21-22 October 2020. Beirut, Lebanon

Where to get started
Hands-on with Docker Swarm:

- https://docs.docker.com/engine/swarm/swarm-tutorial/

You will learn how to:

● Create a Swarm service
● Deploy a load balancer
● Create swarm cluster
● Create swarm service

7

mailto:spiga@infn.it
https://docs.docker.com/engine/swarm/swarm-tutorial/

spiga@infn.it HPC4L - Training 21-22 October 2020. Beirut, Lebanon

Apache Mesos
Apache Mesos is an open-source cluster manager that provides efficient
resource isolation and sharing across distributed applications (frameworks)
ensuring automated self-healing and scalability.

Mesos implements a
two-level
meta-scheduler that
provides primitives to
express a wide variety
of scheduling patterns
and use cases

8

mailto:spiga@infn.it

spiga@infn.it HPC4L - Training 21-22 October 2020. Beirut, Lebanon

Apache Mesos (cont)
Mesos offers a layer of software that organizes the machines (physical servers
and/or VMs and/or cloud instances) letting applications draw from a single pool
of intelligently- and dynamically-allocated resources.

Examples of Mesos frameworks include:

● Marathon - a production-grade container orchestration platform designed to
launch long-running applications;

● Chronos - a distributed fault-tolerant job scheduler; it can be used to run
processing tasks.

9

mailto:spiga@infn.it

spiga@infn.it HPC4L - Training 21-22 October 2020. Beirut, Lebanon

How it works:
1. Agent 1 reports to the master that it has 4 CPUs and 4 GB

of memory free. The master then invokes the allocation
policy module, which tells it that framework 1 should be
offered all available resources.

2. The master sends a resource offer describing what is
available on agent 1 to framework 1.

3. The framework’s scheduler replies to the master with
information about two tasks to run on the agent, using <2
CPUs, 1 GB RAM> for the first task, and <1 CPUs, 2 GB
RAM> for the second task.

4. Finally, the master sends the tasks to the agent, which
allocates appropriate resources to the framework’s
executor, which in turn launches the two tasks (depicted
with dotted- line borders in the figure). Because 1 CPU and
1 GB of RAM are still unallocated, the allocation module
may now offer them to framework 2.

10

mailto:spiga@infn.it

spiga@infn.it HPC4L - Training 21-22 October 2020. Beirut, Lebanon

References
http://mesos.apache.org/

https://mesosphere.github.io/marathon/

https://mesos.github.io/chronos/

https://www.consul.io/

11

mailto:spiga@infn.it
http://mesos.apache.org/
https://mesosphere.github.io/marathon/
https://mesos.github.io/chronos/
https://www.consul.io/

spiga@infn.it HPC4L - Training 21-22 October 2020. Beirut, Lebanon

Kubernetes
Kubernetes is an open-source platform that
coordinates a highly available cluster of computers
that are connected to work as a single unit. It is
backed by Google and RedHat.
● Applications need to be containerized.
● Kubernetes automates the distribution and

scheduling of application containers across a cluster
in a fairly efficient way.

● A Kubernetes cluster can be deployed on either
physical or virtual machines.

12

mailto:spiga@infn.it

spiga@infn.it HPC4L - Training 21-22 October 2020. Beirut, Lebanon

Kubernetes Cluster Resources
A Kubernetes cluster consists of two types of resources:
● The Master coordinates the cluster
● Nodes are the workers that run applications

The Master is responsible for managing the cluster
● coordinates all activities in your cluster, such as scheduling applications,

maintaining applications' desired state, scaling applications, and rolling out
new updates.

A node is a VM or a physical computer that serves as a worker machine in a
Kubernetes cluster

13

mailto:spiga@infn.it

spiga@infn.it HPC4L - Training 21-22 October 2020. Beirut, Lebanon

Kubernetes Master/node processes
The Kubernetes Master is a collection of three processes that run on a single
node in your cluster, which is designated as the master node. These processes
are:

● kube-apiserver
● kube-controller-manager
● Kube-scheduler

Each individual Node in your cluster runs two processes:
● kubelet, which communicates with the Kubernetes Master.
● kube-proxy, a network proxy which reflects Kubernetes networking services on each node.

Moreover, each Node runs a container runtime (like Docker) responsible for pulling
the container image from a registry, unpacking the container, and running the
application.

- A Kubernetes cluster that handles production traffic should have a minimum of three nodes
14

mailto:spiga@infn.it

spiga@infn.it HPC4L - Training 21-22 October 2020. Beirut, Lebanon

Kubernetes Objects
Kubernetes contains a number of abstractions that represent the state of your
system: deployed containerized applications and workloads, their associated
network and disk resources, and other information about what your cluster is
doing.

● These abstractions are represented by objects in the Kubernetes API.

● The basic Kubernetes objects include:
○ Volume
○ Namespace
○ Deployment
○ Pod
○ Service

15

mailto:spiga@infn.it

spiga@infn.it HPC4L - Training 21-22 October 2020. Beirut, Lebanon

Kubernetes Deployment
● Once you have a running Kubernetes cluster, you can deploy your

containerized applications on top of it. To do so, you create a Kubernetes
Deployment configuration.

● The Deployment tells Kubernetes how to create and update instances of
your application. Once you've created a Deployment, the Kubernetes
master schedules application instances onto individual Nodes in the
cluster.

● Once the application instances are created, a Kubernetes Deployment
Controller continuously monitors those instances. If the Node hosting an
instance goes down r is deleted, the Deployment controller replaces it.
This provides a self-healing mechanism to address machine failure or
maintenance.

● In a pre-orchestration world, installation scripts would often be used to
start applications, but they did not allow recovery from machine failure.
By both creating your application instances and keeping them running
across Nodes, Kubernetes Deployments provide a fundamentally
different approach to applications

16

mailto:spiga@infn.it

spiga@infn.it HPC4L - Training 21-22 October 2020. Beirut, Lebanon

Kubernetes Pod
● A Pod is the basic building block of Kubernetes. It represents a

running process on your cluster.
● A Pod encapsulates an application container, storage

resources, a unique network IP, and options that govern how
the container(s) should run.

● Pods that run a single container. The “one -container - per
-Pod” model is the most common Kubernetes use case; in this
case, you can think of a Pod as a wrapper around a single
container, and Kubernetes manages the Pods rather than the
containers directly.

● Pods that run multiple containers that need to work together. A
Pod might encapsulate an application composed of multiple co
-located containers that are tightly coupled and need to share
resources. The Pod wraps these containers and storage
resources together as a single manageable entity.

17

mailto:spiga@infn.it

spiga@infn.it HPC4L - Training 21-22 October 2020. Beirut, Lebanon

Kubernetes Services

● A Kubernetes Service is an abstraction which defines a
logical set of Pods and a policy by which to access it.

● Although each Pod has a unique IP address, those IPs are
not exposed outside the cluster without a Service. Services
allow your applications to receive traffic.

● Services match a set of Pods using labels and selectors, a
grouping primitive that allows logical operation on objects in
Kubernetes.

● Labels are key/value pairs attached to objects and can be
used in any number of ways:

○ Designate objects for development, test, and
production

○ Embed version tags
○ Classify an object using tags

18

mailto:spiga@infn.it

spiga@infn.it HPC4L - Training 21-22 October 2020. Beirut, Lebanon

Kubernetes as a Service
Deploying and managing a Kubernetes cluster is generally not trivial (that’s why
Minikube was introduced), since it requires effort and several skills.

- It would be nice to automatize this part as well, and focus just on deploying
our containers on a Kubernetes cluster that somebody else instantiates for
us.

Many Cloud providers give us just that: a Kubernetes as a Service.
- Amazon provides what they call the “Elastic Container Service for Kubernetes”, or

EKS for short. Other providers have similar offerings.

19

mailto:spiga@infn.it

spiga@infn.it HPC4L - Training 21-22 October 2020. Beirut, Lebanon

Docker swarm - Apache Mesos - Kubernetes

We have seen (with different degrees of in-depth analysis) the three current
major solutions for container or resource orchestration.
Question now should be: which one to use ?
Some general considerations on when to use what:
● Docker Swarm for smaller projects and for testing purposes. Easy to use

if you are already familiar with Docker.
● For larger, enterprise-like solutions, Kubernetes. It’s also “the Google way

of doing it”. But mind the rather steep learning curve.
● Mesos for very large clusters and for workflow-based solutions. It can be

fairly complex, so it might need a sizeable support team.

20

mailto:spiga@infn.it

spiga@infn.it HPC4L - Training 21-22 October 2020. Beirut, Lebanon

So let’s recap…
Where we are ?

- We have seen Cloud
- Programming the cloud via PaaS

- We have discussed cloud-native as “synonym” of microservices which are
made of container

- We’ve discussed dockers
- We have discussed how combine dockers (docker compose) to build a microservice

- This bring us to the question:
- What happens when I’ve “many dockers” and computational resources are distributed ?

21

Container Orchestration

mailto:spiga@infn.it

spiga@infn.it HPC4L - Training 21-22 October 2020. Beirut, Lebanon

So far so good…
However, there should be a major question now:

- Where can I deploy / find / access my container orchestrator, more in general
where to run my cloud native applications?

- It depends…
- However I’d generalize the question as: Where is my infrastructure ?

We already discussed that you can find Kubernetes as a service (somewhere),
that’s one option.. A second option is to see how one could define, and
automatize the infrastructure deployment in the Cloud...

22

mailto:spiga@infn.it

