
Using the DEEP-Hybrid-
Datacloud platform

Remote webinar for EGI-ACE
01 December 2021

Ignacio Heredia
iheredia@ifca.unican.es
Instituto de Física de Cantabria
(CSIC-UC)

mailto:iheredia@ifca.unican.es

Introduction - The project
● The project was carried out with European Horizon 2020 funds.
● The project provides new generation of e-infrastructures that harness latest generation

technologies, supporting deep learning and other intensive computing techniques to exploit
very large data sources.

● It aims to lower the adoption barriers for new communities and users, satisfying the needs of
both research, education communities and citizen science.

Project partners:

2

No machine learning knowledge. Just
give me a working model to make
predictions.

We offer:

➔ a catalogue full of ready-to-use
modules to perform inference with
your data

➔ an API to easily interact with the
services

➔ solutions to run the inference in local
or Cloud resources

➔ the ability to develop complex
topologies by composing different
modules

Introduction - The users

3

I want to retrain a working model on my
personal dataset.

We offer:

➔ the ability to train out-of-the-box a
module of the catalogue on your
personal dataset

➔ an API to easily interact with the
model

➔ data storage resources to access
your dataset (DEEP-Nextcloud,
OneData, …)

➔ the ability to deploy the developed
service on Cloud resources

➔ the ability to share the service with
other users in the user’s catalogue

I want to develop my custom Deep
Learning model.

We offer:

➔ a ready-to-use environment with the
main DL frameworks running in a
dockerized solution running on
different types of hardware (CPUs,
GPUs, etc)

➔ data storage resources to access
your dataset (DEEP-Nextcloud,
OneData, …)

➔ the ability to deploy the developed
module on Cloud resources

➔ the ability to share the module with
other users in the open catalogue

➔ the possibility to integrate your
module with the API to enable easier
user interaction

Basic Intermediate Advanced

Introduction - The users

4

Marketplace

Intermediate
Retrain

Basic
Predict

Advanced
Develop

Dashboard

DEEPaaS API
(serverless)

DEEPaaS API
(deployment)

Nextcloud / OneData
(storage)

JupyterLab
Cookiecutter - Github -

Dockerhub

Nextcloud / Onedata
(storage)

Deep Hybrid Datacloud infrastructure
Authentication - Authorization - Storage - Computing - Orchestration

New
modules

Introduction - Useful links
Homepage

Marketplace

Dashboard

Github

DockerHub

Documentation

NextCloud

5

https://deep-hybrid-datacloud.eu/

https://marketplace.deep-hybrid-datacloud.eu/

https://train.deep-hybrid-datacloud.eu/

https://github.com/deephdc

https://hub.docker.com/u/deephdc/

https://docs.deep-hybrid-datacloud.eu/en/latest/

https://nc.deep-hybrid-datacloud.eu/

(* these slides are available here)

https://deep-hybrid-datacloud.eu/
https://marketplace.deep-hybrid-datacloud.eu/
https://train.deep-hybrid-datacloud.eu/
https://github.com/deephdc
https://hub.docker.com/u/deephdc/
https://docs.deep-hybrid-datacloud.eu/en/latest/
https://nc.deep-hybrid-datacloud.eu/

Introduction - Webinar outline
1. Exploring the Marketplace
2. Using the Dashboard

a. Deploying a module
b. Making inference
c. Retraining a module on a new dataset

3. Developing a new module
a. Deploying the DEEP development environment
b. Using the cookiecutter
c. Integrating it with DEEPaaS API
d. Adding the model to the CI pipeline
e. Adding the model to the Marketplace

4. What’s next?
a. New DEEPaaS features
b. Friendlier UI for module inference
c. Training Dashboard

6

Exploring the Marketplace

1

The Marketplace

8

The Dashboard

2

The Dashboard - Module Overview

10

The Dashboard - Deploying a module

11

Configurable options

● docker image (from deep-oc, but also
custom docker images)

● hardware (#cpus, #gpus, RAM)
● storage (OneData, Nextcloud volumes)
● services (DEEPaaS, JupyterLab)

12

The Dashboard - Making inference
Launch image-classification-tf module with DEEPaaS.

13

The Dashboard - Retraining a module

DEEPaaS Monitor Training history

1) Launch image-classification-tf module with JupyterLab (remember adding password).
2) Copy some demo files to make a mock dataset.
3) Terminal: deepaas-run --listen-ip 0.0.0.0 to launch DEEPaaS.

Develop your module

3

15

Developing - DEEP Development Environment

Configurable options

● docker image (from deep-oc, but also
custom docker images). Eg:

○ Tensorflow docker
○ Pytorch docker
○ ...

● hardware (#cpus, #gpus, RAM)
● storage (OneData, Nextcloud volumes)
● services (DEEPaaS, JupyterLab)

This is the easiest way to develop any new module from scratch as it will take care of generating all the nitty-gritty
details that we will cover in the following slides (entrypoints, files, Jenkinsfile, Dockerfile, etc).

● Use the command: cookiecutter https://github.com/indigo-dc/cookiecutter-data-science
● Answer questions:

○ Project name, description, version, license type
○ Author name, email, Github account
○ Dockerhub account, Docker base image

● This will generate two folders. Eg:

○ mymodule : This is where the project code is located
→ Example: https://github.com/deephdc/image-classification-tf

○ DEEP-OC-mymodule : This contains the Dockerfile of the project
→ Example: https://github.com/deephdc/DEEP-OC-image-classification-tf

16

Developing - DEEP Cookiecutter

https://github.com/deephdc/image-classification-tf
https://github.com/deephdc/DEEP-OC-image-classification-tf

17

Developing - Integrating with DEEPaaS
● Head over to mymodule . Any module that wants to integrate with DEEPaaS should have two minimum

requirements:

○ it should define a file (eg. mymodule/mymodule/api.py) with the functions to interact with the module.
These functions should define:
■ the model metadata
■ the input args for training
■ the input args for prediction
■ the response structure for prediction
■ the train function
■ the predict function
■ a model warming function for prediction

→ Minimal example: https://github.com/deephdc/demo_app/blob/master/demo_app/api.py

→ Full example: https://github.com/deephdc/image-classification-tf/blob/master/imgclas/api.py

○ it should define an entrypoint in mymodule/setup.cfg pointing to that file
→ Example: https://github.com/deephdc/demo_app/blob/master/setup.cfg#L25-L27

 get_metadata()

 get_train_args()

 get_predict_args()

 schema

 train()

 predict ()

 warm()

https://github.com/deephdc/demo_app/blob/master/demo_app/api.py
https://github.com/deephdc/image-classification-tf/blob/master/imgclas/api.py
https://github.com/deephdc/demo_app/blob/master/setup.cfg#L25-L27

● Head over to DEEP-OC-mymodule and modify the Dockerfile following your needs:
○ install additional packages,
○ change the base image,
○ etc.

18

Developing - Customizing the Dockerfile

19

Developing - Continuous Integration
● Both mymodule and DEEP-OC-mymodule have their respective Jenkinsfile that define the actions to be taken

when a change is committed to the repos.
● Typical workflows:

○ mymodule/Jenkinsfile will:
■ run PEP8 style analysis
■ trigger of DEEP-OC-mymodule/Jenkinsfile .

→ Example: https://github.com/deephdc/image-classification-tf/blob/master/Jenkinsfile

○ DEEP-OC-mymodule/Jenkinsfile will:
■ build Docker images for different branches (train/test) and different hardware (cpu/gpu)
■ upload the image to DockerHub
■ build Docker images of other dependent modules. For example, changes in the code of

image-classification should rebuild all Docker images of applications that were trained with that
code (plant classifier, seed classifier, etc).

■ refresh the module page in the Marketplace (see next step)
→ Example: https://github.com/deephdc/DEEP-OC-image-classification-tf/blob/master/Jenkinsfile

https://github.com/deephdc/image-classification-tf/blob/master/Jenkinsfile
https://github.com/deephdc/DEEP-OC-image-classification-tf/blob/master/Jenkinsfile

● Head over to DEEP-OC-mymodule and modify metadata.json with the info relevant to your module. This is the
information that will appear in the Marketplace page.

● Make a Pull Request to add your module here. This will create the Jenkins pipeline for your module and will add
the module to the Marketplace and the Training Dashboard.

20

Developing - Integrating to the Marketplace

Congratulations,
you’re done!

https://github.com/deephdc/deep-oc/blob/master/MODULES.yml

What’s next?

4

● Integration with Dask

22

What’s next? - New DEEPaaS features
● Easier module integration via

decorators/hints

Before (webargs) After (type hints)

Mature

Midterm

Before (Swagger UI)

23

What’s next? - Friendlier inference UI
After (Gradio based) Mature

Inputs

Before (Swagger UI)

24

What’s next? - Friendlier inference UI
After (Gradio based) Mature

Outputs

25

What’s next? - Training dashboard
● Organizing training run in experiments

○ hyperparameter optimization
○ easier side-by-side comparison of training runs

● Richer module metadata language, to keep track of:
○ training datasets
○ models
○ training execution pipelines

Midterm

Project

DEEP-Hybryd-DataCloud has received funding from the European Horizon 2020 research and innovation programme under grant agreement Nº777435

Questions

