
Green Computing at Dutch National Supercomputing Center

EGI : Green Computing webinar Introduction session

Sagar Dolas Program Lead - Future Computing (HPC, Quantum & Networking) SURF Labs

Agenda

- Introduction to SURF, Netherlands
- Energy as a design point for supercomputing operations
- Energy experiments on experimental systems
- EAR design & data collections
- Questions

Reliable, secure and innovative ICT infrastructure Digital innovation and transformation of education and research Knowledge exchange and trainings Services development and integration with EU initiates

Snellius : Dutch National Supercomputer

Snellius

Phase 1:

- 76,832 cores (1.6 ×)
- 144 GPUs (3 Pflop/s, 14 ×)
- Total peak: 6.1 Pflop/s (3.4 ×)

Phase 1 and 2

- Total peak: 11.2 Pflop/s (6.2 ×)
- Full system, based on choice for Phase 3:
 - > 200,000 cores (> 4 ×)
 - Total peak: 13.6 21.5 Pflop/s (7.6 11.9 ×)

Snellius – Energy Consumption

- HPL Energy Consumption (typical use: 85%, idle use: ~ 25%)
 - Snellius
 - Phase 1: 620 kW (0.7 ×)
 - Phase 1 and 2: 1200 kW (1.4 ×)
 - Full system ("worst case": Phase 3 GPU): 1430 kW (1.6 ×)
- Average energy consumption based on phasing
 - 2021–2022: ~ 1 ×
 - 2023: 1.5 ×
 - 2024 and later: 1.6 ×

Datacenter

PUE < 1.19

Waste heat reuse Through hot & cold well

Use of Hvdroelectricitv Infrastructur Level

Rear door heat exchanger + Direct water cooling Hot & cold island

CPU + GPU architecture System Level

Energy & power management, energy capping, Energy accounting Application Level

Application analysis & tuning using EAR User awareness

Platform for energy & performance visualisation

Datacenter

PUE < 1.19

Waste heat reuse

Use of Hydroelectricity

Rear door heat exchanger + Direct water cooling

CPU + GPU architecture System Level

Energy & power management, energy capping, Energy accounting Application

Application monitoring, analysis & tuning User awareness

Platform for energy & performance visualisation

architecture

Datacenter	Infrastructure Level	System Level	Application	User
PUE < 1.19	Rear door heat	Energy & power	Level	awareness
Waste heat reuse	exchanger + Direct water	management, energy capping,	Application	Platform for energy &
Use of Hydroelectricity	cooling Hot & cold island	Energy accounting	monitoring, analysis &	performance
, ,	CPU + GPU		tuning	

Datacenter	Infrastructure Level	System Level	Application	User
PUE < 1.19	Rear door heat exchanger + Direct water cooling Hot & cold island	Energy & power management, energy capping, Energy accounting	Level	awareness
Waste heat reuse Use of Hydroelectricity			Application monitoring, analysis &	Platform for energy & performance visualisation
,,	CPU + GPU architecture		tuning	

Datacenter

PUE < 1.19

Waste heat reuse

Use of Hydroelectricity Infrastructure Level

Rear door heat exchanger + Direct water cooling Hot & cold island

CPU + GPU architecture System Level

Energy & power management, energy capping, Energy accounting Application Level

Application monitoring, analysis & tuning User awareness

Platform for energy & performance visualisation

Datacenter

PUE < 1.19

Waste heat reuse

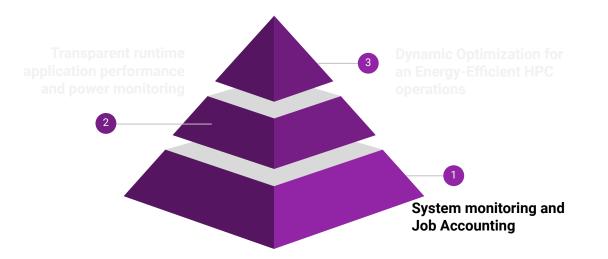
Use of Hydroelectricity Infrastructure Level

Rear door heat exchanger + Direct water cooling Hot & cold island

CPU + GPU architecture System Level

Energy & power management, energy capping, Energy accounting Application Level

Application monitoring, analysis & tuning User awareness


Platform for energy & performance visualisation

Datacenter PUE < 1.19	Infrastructure Level Rear door heat	System Level Energy & power	Application Level	User awareness
Waste heat reuse Use of Hydroelectricity	exchanger + Direct water cooling Hot & cold island CPU + GPU architecture	management, energy capping, Energy accounting	Application monitoring, analysis & tuning	Platform for energy & performance visualisation

EAR software

EAS main values

EAR software

EAS main values Transparent runtime 3 application performance and power monitoring System monitoring and **Job Accounting**

EAR software

EAS main values Transparent runtime **Dynamic Optimization for** 3 application performance an Energy-Efficient HPC and power monitoring operations System monitoring and **Job Accounting**

Energy-efficiency process

System Monitoring and Contro

Nodes temperature, power (Node, DRAM. Package, GPU), effective frequency ...

Automatic reporting of run time hardware issues Node powercap: heterogeneous nodes, power balance Cluster powercap : Hierarchical architecture for system scalability

Job Accounting

Performance metrics monitoring: CPI, CPU Gflops, Memory bandwidth, MPI hints, IO bandwidth, GPU utilization

Granularity: jobid, stepid, "loop", user, node

Analysis

Hints for application analysis and optimization Hints for system analysis and optimization Reporting system, extensible based on plugins Trace file generation Energy accounting and reporting commands included Graphana visualization

ptimization

EAS

Runtime application energy optimization Transparent, dynamic and lightweight runtime library with no user intervention required Automatic energy savings according to energy policies

Analysis Hints for application analysis and optimization Hints for system analysis and optimization Reporting system, extensible based on plugins Trace file generation Energy accounting and reporting commands included Graphana visualization

Optimization

Runtime application energy optimization Transparent, dynamic and lightweight runtime library with no user intervention required Automatic energy savings according to energy policies

System Monitoring and Control

Nodes temperature, power (Node, DRAM. Package, GPU), effective frequency ...

Automatic reporting of run time hardware issues Node powercap: heterogeneous nodes, power balance Cluster powercap : Hierarchical architecture for system scalability

Job Accounting

Performance metrics monitoring: CPI, CPU Gflops, Memory bandwidth, MPI hints, IO bandwidth, GPU utilization

Granularity: jobid, stepid, "loop", user, node

EAS

Analysis

Hints for application analysis and optimization Hints for system analysis and optimization Reporting system, extensible based on plugins Trace file generation Energy accounting and reporting commands included Graphana visualization

Optimization

Runtime application energy optimization Transparent, dynamic and lightweight runtime library with no user intervention required Automatic energy savings according to energy policies

System Monitoring and Control

Nodes temperature, power (Node, DRAM. Package, GPU), effective frequency ...

Automatic reporting of run time hardware issues Node powercap: heterogeneous nodes, power balance Cluster powercap : Hierarchical architecture for system scalability

Job Accounting

Performance metrics monitoring: CPI, CPU Gflops, Memory bandwidth, MPI hints, IO bandwidth, GPU utilization

Granularity: jobid, stepid, "loop", user, node

EAS

Analysis

Hints for application analysis and optimization Hints for system analysis and optimization Reporting system, extensible based on plugins Trace file generation Energy accounting and reporting commands included Graphana visualization

Optimization

Runtime application energy optimization Transparent, dynamic and lightweight runtime library with no user intervention required Automatic energy savings according to energy policies

System Monitoring and Control

Nodes temperature, power (Node, DRAM. Package, GPU), effective frequency ...

Automatic reporting of run time hardware issues Node powercap: heterogeneous nodes, power balance Cluster powercap : Hierarchical architecture for system scalability

Job Accounting

Performance metrics monitoring: CPI, CPU Gflops, Memory bandwidth, MPI hints, IO bandwidth, GPU utilization

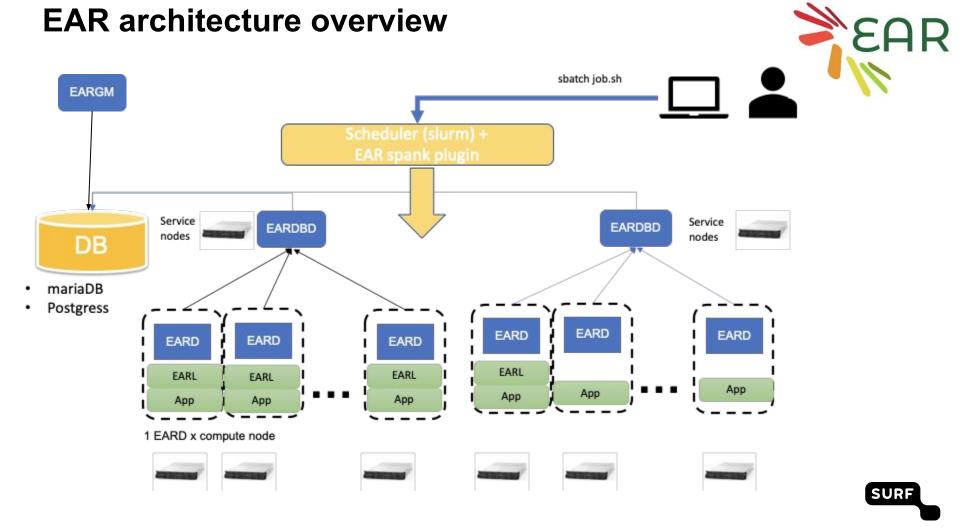
Granularity: jobid, stepid, "loop", user, node

Energy optimization

- Common to all the policies
 - At runtime, loop is detected and loop signature is computed
 - EAR uses time and power models for frequency selection
- EAR-min_time policy
 - $\circ\,$ Applications start at default policy $\,$ frequency lower than nominal
 - Loops with "enough" energy efficiency are accelerated (compute bound)
 - $\circ\,$ Policy detects changes and applies again the policy
 - EAR- min_energy policy
 - Applications start at default policy frequency (nominal)
 - Frequency is reduced up to a maximum performance penalty

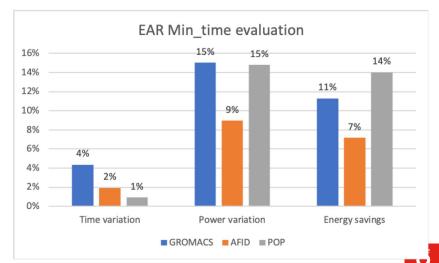
BSC

Energy optimization


- Common to all the policies
 - At runtime, loop is detected and loop signature is computed 0
 - EAR uses time and power models for frequency selection Ο
- **EAR-min time** policy
 - Applications start at default policy frequency lower than nominal
 - Loops with "enough" energy efficiency are accelerated (compute bound)
 - Policy detects changes and applies again the policy
 - EAR- min energy policy
 - Applications start at default policy frequency (nominal) Ο
 - Frequency is reduced up to a maximum performance penalty Ο

BSC

reserved


Experimental System for energy experiments

- Experiments system have 4x Lenovo SR650 system
- Skylake 6148 @2.5GHz 40c nodes with 100 g HDR
- 2x V100 nodes for GPU tuning experiments
- Default frequency=2.5GHz
- Easybuild software stack
- Jenkins for automated software builds
- User access for community
- EAR as energy management framework

Energy experiments with real use cases

- •Application use cases provided by SURF Open Innovation Lab (SOIL) collaboration.
 - Experiments executed in Lenovo SD530 system
 - Skylake 6148 @2.4GHz 20c nodes with EDR network
 - Default frequency=2.0GHz
 - GROMACS 640 processes. 16 nodes
 - AFID 600 processes. 15 nodes
 - POP 400 processes. 10 nodes

Average energy savings of 10%

SURF

voua

Visualisation Prototype

Other approaches for achieving energy efficiency

- ML based acceleration for HPC application
- Optimizing the number of simulation required to achieve particular outcome on HPC system
- Exploring Neuromorphic computing for scientific analysis & experimentation
- Introduce the concept of energy accounting

- 1. In progress to operationalise on the Dutch national supercomputer
- 2. Large number of experiments will be carried out to fully understand tunable parameters
- 3. Assessing impact, operational and user requirements
- 4. Pilots will be carried out at SURF infrastructure jointly with member institutions.
- Most important : knowledge dissemination : Joint hackathons, workshops and more.

- 1. In progress to operationalise on the Dutch national supercomputer
- 2. Large number of experiments will be carried out to fully understand tunable parameters
- 3. Assessing impact, operational and user requirements
- 4. Pilots will be carried out at SURF infrastructure jointly with member institutions.
- Most important : knowledge dissemination : Joint hackathons, workshops and more.

- 1. In progress to operationalise on the Dutch national supercomputer
- 2. Large number of experiments will be carried out to fully understand tunable parameters
- 3. Assessing impact, operational and user requirements
- 4. Pilots will be carried out at SURF infrastructure jointly with member institutions.
- Most important : knowledge dissemination : Joint hackathons, workshops and more.

- 1. In progress to operationalise on the Dutch national supercomputer
- 2. Large number of experiments will be carried out to fully understand tunable parameters
- 3. Assessing impact, operational and user requirements
- 4. Pilots will be carried out at SURF infrastructure jointly with member institutions.
- Most important : knowledge dissemination : Joint hackathons, workshops and more.

- 1. In progress to operationalise on the Dutch national supercomputer
- 2. Large number of experiments will be carried out to fully understand tunable parameters
- 3. Assessing impact, operational and user requirements
- 4. Pilots will be carried out at SURF infrastructure jointly with member institutions.
- 5. Most important : knowledge dissemination : Joint hackathons, workshops and more.

