
Training: Infrastructure as Code to
deploy scientific applications in

EOSC
EGI Conference 2022

Miguel Caballer (micafer@upv.es)
Amanda Calatrava (amcaar@i3m.upv.es)

Agenda
● Introduction
● Infrastructure Manager (IM)
● Elastic Cloud Computing Cluster (EC3)
● Questions

Introduction (I)

"A long time ago, in a data center far, far away, an ancient group of powerful
beings known as sysadmins used to deploy infrastructure manually. Every
server, every route table entry, every database configuration, and every load
balancer was created and managed by hand. It was a dark and fearful age:
fear of downtime, fear of accidental misconfiguration, fear of slow and fragile
deployments, and fear of what would happen if the sysadmins fell to the dark
side (i.e. took a vacation). The good news is that thanks to the DevOps
Rebel Alliance, we now have a better way to do things:
Infrastructure-as-Code (IAC)."

Source https://blog.gruntwork.io/

https://blog.gruntwork.io/

Introduction (II)

Infrastructure as code (IaC) is the process of managing and provisioning computer data centers
through machine-readable definition files, rather than physical hardware configuration or interactive
configuration tools. Benefits:

● You can automate your entire provisioning and deployment process, which makes it much faster and more
reliable than any manual process.

● You can store those source files in version control, which means the entire history of your infrastructure is now
captured in the commit log, which you can use to debug problems, and if necessary, roll back to older versions.

● You can validate each infrastructure change through code reviews and automated tests.
● You can create a library of reusable, documented, battle-tested infrastructure code that makes it easier to scale

and evolve your infrastructure.

There are several tools to manage infrastructure-as-code, but the most well-known ones are Ansible,
Puppet, Chef, Saltstack, Terraform and CloudFormation.

https://www.ansible.com/
https://puppet.com/
https://www.chef.io/products/chef-infra
https://www.vmware.com/support/acquisitions/saltstack.html
https://www.terraform.io/
https://aws.amazon.com/cloudformation/?nc1=h_ls

Introduction (III)

Both IM and EC3 tools follow this principle, two services that allow users to automate the
deployment and configuration process of virtual infrastructures on top of cloud resources.

In this training session, we will show both the IM Dashboard and the EC3 CLI tools in action.

With this tools:

● You can automate your entire provisioning and deployment process, which makes it much faster and
more reliable than any manual process.

● You can use the same definition templates to provision the very same virtual infrastructure in different
Cloud providers.

● You can use the OASIS TOSCA Simple Profile in YAML standard to describe your cloud topologies.
● You can store those source files in version control, which means the entire history of your infrastructure

is now captured in the commit log, which you can use to debug problems, and if necessary, roll back to
older versions.

Infrastructure Manager (IM)

Introduction to IM

● IM is a service that deploys virtual infrastructures on top of Cloud resources.

● It uses RADL or TOSCA files to describe the infrastructure.

○ Infrastructure as code (IaC)

● The IM automates the deployment, configuration, software installation,
monitoring and update of virtual infrastructures.

● It supports a wide variety of back-ends, thus making
user applications Cloud agnostic.

General View
● General platform to deploy on demand customizable virtual computing

infrastructures.
○ With the precise software configuration required.

○ Allow to deploy any kind of complex infrastructure.

○ Share Infrastructure descriptions.

○ No need of pre-packaged VMIs.

■ Enable re-using of VMIs.

○ The same complex infrastructure can be
deployed both on-premise and in a public Cloud.

IM features
● It features DevOps capabilities.

○ Based on Ansible.
○ Provides recipes for common deployments.
○ Also supporting cloud-init scripts.

● IM works as a service that offers several interfaces:
○ XML-RPC and REST APIs.
○ Command-line application.
○ Web-based GUI.

● It is distributed under a GNU GPL v3.0 open source license
and its source code is available on GitHub.

https://github.com/grycap/im

https://github.com/grycap/im

Cloud Providers
● It supports a wide range of cloud providers and other computing

back-ends:
○ Public: Amazon Web Services (AWS), Google

Cloud Platform (GCP), Microsoft Azure,
T-Systems OTC, Exoscale, Cloud&Heat.

○ On-premises: OpenNebula, OpenStack,
CloudStack, VMWare, libvirt.

○ Federated: EGI FedCloud (OCCI and
OpenStack), FogBow.

○ Containers: Docker, Kubernetes
○ The list above can be easily extended by

plugins.

IM - Working Scheme

● The user can provide an RADL or TOSCA documents as input to the IM, describing the
infrastructure:

○ RADL: Resource and Application Description Language.

■ High level Language to define virtual infrastructures and Specify VM requirements.

○ TOSCA: OASIS Standard

■ Open standard language to model application architectures to be deployed on a Cloud.

RADL
An RADL document has the following general structure:

ansible <ansible_host_id> (<features>)

network <network_id> (<features>)

system <system_id> (<features>)

configure <configure_id> (<Ansible recipes>)

contextualize [max_time] (system <system_id>

configure <configure_id> [step <num>] ...)

deploy <system_id> <num> [<cloud_id>]

● The keywords ansible, network,
system and configure assign some
features or recipes to an identity <id>.
The features are a list of constraints
separated by and, and a constraint is
formed by <feature name> <operator>
<value>.

network net (outbound = 'yes')
system node (
 cpu.count = 1 and
 memory.size >= 512M and
 net_interface.0.connection = 'net'
)
configure node (
@begin

 - tasks:
 - user: name=user1 password=1234
 @end
)
deploy node 1

● In this example
○ A node type named “node” with 1

CPU and 512MB of RAM is
defined.

○ Connected to a public network

○ In the configuration a user named
“user1” is created.

○ 1 node of type “node” is deployed

RADL Example

● Topology and Orchestration Specification for Cloud Applications
○ OASIS Standard

○ TOSCA Simple Profile in YAML Version 1.0

○ Standard to specify Cloud Topologies

○ Defines the interoperable description of services and applications hosted
on the cloud

■ Including their components, relationships, dependencies, requirements, and
capabilities

○ Enabling portability and automated management across cloud
providers

TOSCA

TOSCA

tosca_definitions_version:
tosca_simple_yaml_1_0

imports:

 - types: https://../custom_types.yaml

description: Deploy instance for Kepler

topology_template:

 inputs:

 memory_size:
 type: string
 description: RAM memory
 default: 1 GB

 node_templates:

 kepler:
 type: tosca.nodes.indigo.Kepler
 requirements:
 - host: kepler_server

 kepler_server:
 type: tosca.nodes.indigo.Compute
 capabilities:
 endpoint:
 properties:
 network_name: PUBLIC
 ports:
 vnc_port:
 protocol: tcp
 source: 5900
 host:
 properties:
 num_cpus: 1
 mem_size:
 get_input: memory_size
 os:
 properties:
 type: linux
 distribution: ubuntu
 version: 18.04

 outputs:
 instance_ip:
 value:
 get_attribute:
 - kepler_server,
 - public_address
 - 0
 instance_creds:
 value:
 get_attribute:
 - kepler_server,
 - endpoint
 - credential
 - 0

IM image URIs

● The user specifies the image (or list of images) to use.
○ URI naming convention to abstract from cloud provider:

■ one://server:port/image-id

■ ost://server:port/ami-id

■ aws://region/ami-id

■ appdb://site_name/image_name?vo_name

■ <site end-point>/<image-id>

○ In INDIGO-DataCloud, the image information is obtained from the CMDB.

● Then, the IM obtains the list of IaaS providers available to the user.
○ From the credentials provided by the user.

● Finally, it contacts the IaaS provider selected and deploys the infrastructure.

Contextualization process
1. SSH connection to the Master VM

○ A Linux-based VM with a public IP

2. Configure Master VM
○ Install and configure Ansible

i. Also with Ansible

3. Launch Contextualization Agent
○ Check SSH from VMs

○ Call Ansible

Client-side Tools: CLI
Usage: im_client.py [-u|--xmlrpc-url <url>] [-r|--restapi-url <url>] [-v|--verify-ssl] [-a|--auth_file
<filename>] operation op_parameters

Operation:

 list

 create <radl_file> [async_flag]

 destroy <inf_id>

 getinfo <inf_id> [radl_attribute]

 getradl <inf_id>

 getcontmsg <inf_id>

 getstate <inf_id>

 getvminfo <inf_id> <vm_id> [radl_attribute]

 getvmcontmsg <inf_id> <vm_id>

 addresource <inf_id> <radl_file> [ctxt flag]

 ...

Client-SIDE Tools: Web
● Publicly-available web interface (also open-sourced).

○ https://im.egi.eu
■ Login with EGI Checkin.
■ Integrated with AppDB.

○ Easily deploy infrastructures from a web browser
○ Also on GitHub:

■ https://github.com/grycap/im-dashboard

https://im.egi.eu
https://github.com/grycap/im-dashboard

● Easy interface
○ For non advanced users
○ Easily deploy infrastructures from a web browser

■ Select it from a list of configurable list of templates.

Client-SIDE Tools: Web

APIs to be consumed by Clients

● XML-RPC API
○ API that follows the XML-RPC specification.

● REST API
○ IM Service can be accessed

through a REST(ful) API
○ Follows OpenAPI

Specification

More info:
● https://app.swaggerhub.com/apis/grycap/InfrastructureManager/
● http://www.grycap.upv.es/im/documentation.php

https://app.swaggerhub.com/apis/grycap/InfrastructureManager/
http://www.grycap.upv.es/im/documentation.php

Where is the IM used?
● The IM is used in the VMOps Dashboard of EGI.

○ As the EGI Cloud Compute communication layer to create VM topologies.
○ https://dashboard.appdb.egi.eu
○ https://docs.egi.eu/users/compute/cloud-compute/monitor/

https://dashboard.appdb.egi.eu/
https://docs.egi.eu/users/compute/cloud-compute/monitor/

Where is the IM used?

● By the INDIGO PaaS Orchestrator:

○ IM is a key component of the architecture:

○ Used at IaaS level to provide TOSCA-based

deployment of infrastructures.

○ https://indigo-paas.cloud.ba.infn.it

https://indigo-paas.cloud.ba.infn.it

Demo

https://im.egi.eu

https://marketplace.eosc-portal.eu/services/infrastructure-manager-im

See full demo video at:

● https://youtu.be/vmtzGOZxiUg

Let's access the IM Dashboard!!

https://im.egi.eu
https://marketplace.eosc-portal.eu/services/infrastructure-manager-im
https://youtu.be/vmtzGOZxiUg

More Information
Video demos in YouTube:

https://youtube.com/playlist?list=PLgPH186Qwh_37AMhEruhVKZSfoYpHkrUp

IM images in Docker Hub:

https://hub.docker.com/r/grycap/im/

https://hub.docker.com/r/grycap/im-dashboard/

Source Code in GitHub:

https://github.com/grycap/im

https://github.com/grycap/im-dashboard

IM Info Web:

http://www.grycap.upv.es/im

https://youtube.com/playlist?list=PLgPH186Qwh_37AMhEruhVKZSfoYpHkrUp
https://hub.docker.com/r/grycap/im/
https://hub.docker.com/r/grycap/im-dashboard/
https://github.com/grycap/im
https://github.com/grycap/im-dashboard
http://www.grycap.upv.es/im

Elastic Compute Cluster in the
Cloud (EC3)

What is EC3?
● EC3 was created with the idea of providing virtual elastic computer clusters on

Cloud platforms.

Facilitate access to computing platforms for
non-experienced users

Maintain the traditional work environment,
with clusters configured with a well-known

middleware.

Automatic management of elasticity, reducing
costs (public cloud) and energy expenditure

(private cloud).

Automatic configuration of the application
execution environment.

Compatible with a wide range of cloud
providers (public, federated and

on-premises).
Support for hybrid clusters.

EC3 components
● EC3 deploys and configures

virtual elastic clusters. It relies
on IM to deploy the machines
and on CLUES to automatically
manage the elasticity.

● Offers a set of predefined
templates to configure the
resources through Ansible:

○ Kubernetes, Mesos, SLURM,
Torque, SGE, HTCondor,
Nomad.

CLUESIM

Ansible recipes

EC3

EC3 Architecture

Deploy

Configure

Manage

Cluster
request

Automatic Elasticity
● Elasticity Management: ability to adapt the size of the cluster to the

workload dynamically and automatically:
○ Horizontal Elasticity: increase / decrease the number of VMs.

● Self-management: elasticity rules are evaluated from the main node of
the cluster without requiring any external entity in charge of monitoring
the cluster to decide when to increase / reduce the size of the cluster.

● Transparency: elasticity should not affect the execution of tasks, going
unnoticed both for tasks and for the user.

Automatic Elasticity (II)
● The elasticity module is responsible for dynamically adding and removing nodes from the

cluster by monitoring the LRMS.

● Deployment policies (scale out):

○ On demand: a node is deployed for each job that comes to the queue.

○ Bursts: deploys a group of VMs for each job in the queue, assuming that if a job arrives at the
LRMS, there is an increased chance that new jobs will arrive soon. (i.e HTC applications).

● Undeployment policies (scale in):

○ On demand: ends idle nodes when there are no pending jobs in the LRMS queue.

○ Delayed power off: inactive nodes turn off after a certain configurable period of time. (i.e public
clouds)

● CLUES supports the monitoring and management of several LRMS, such as SLURM, Kubernetes and
Mesos, among others. As it is implemented based on a plug-in structure, a new plug-in can be easily
developed to support a new batch system. All the current available plug-ins can be seen here.

https://github.com/grycap/clues/tree/master/cluesplugins

EC3 in the EGI Applications on Demand
● The EGI AoD allows small laboratories and individual researchers the

access to a wide range of computational resources and on-line services
to manage and analyse large amount of data.

● Inside this service we find the EC3 portal:
○ The EC3 AoD portal enables to launch virtual elastic clusters on top of EGI

FedCloud resources using the EC3 tool.

○ It only requires the EGI checking account (and vo.access.egi.eu VO) to
access to the service.

○ The user is guided step by step in the deployment process.

○ Documentation and tutorials are available, i.e. configuring a Galaxy cluster for
data intensive research

https://wiki.egi.eu/wiki/AoD
https://wiki.egi.eu/wiki/Galaxy_workflows_with_EC3
https://wiki.egi.eu/wiki/Galaxy_workflows_with_EC3

EC3 Portal
● EC3aaS facilitates the usage of EC3 to

non-experienced users:
○ It presents an user-friendly web interface

that allows to easily deploy and configure a
virtual elastic cluster on several cloud
providers, including EGI FedCloud.

○ Limited actions: create, list and destroy.

● Documentation:
https://ec3.readthedocs.io/en/latest/ec3aas.html

● Endpoint: https://servproject.i3m.upv.es/ec3-ltos

● Marketplace:
https://marketplace.eosc-portal.eu/services/elasti
c-cloud-compute-cluster-ec3/details

https://ec3.readthedocs.io/en/latest/ec3aas.html
https://servproject.i3m.upv.es/ec3-ltos
https://marketplace.eosc-portal.eu/services/elastic-cloud-compute-cluster-ec3/details
https://marketplace.eosc-portal.eu/services/elastic-cloud-compute-cluster-ec3/details

EC3 Client

● More powerful client interface than the Web interface:

○ More control over the cluster (reconfigure, clone, migrate, stop, restart).
○ Support for hybrid clusters
○ Support for golden images

● The user needs to define an authorization file

● Documentation: https://ec3.readthedocs.io/en/latest/ec3.html

● EC3 Client Source Code in GitHub: https://github.com/grycap/ec3

● EC3 Client image in Docker Hub: https://hub.docker.com/r/grycap/ec3/

https://ec3.readthedocs.io/en/latest/ec3.html
https://github.com/grycap/ec3
https://hub.docker.com/r/grycap/ec3/

EC3 Client (II)

EC3 Client (II)
usage: ec3 [-h] [-v] [-l LOG_FILE] [-ll LOG_LEVEL] [-q]

 {launch,list,show,templates,ssh,reconfigure,destroy,clone,migrate,stop,restart}

Operation:

launch launch a new cluster

list list launched clusters

show print RADL

templates list available templates

ssh connect to cluster via SSH

reconfigure reconfigure the cluster

destroy destroy a launched cluster

clone clone a launched cluster in another Cloud provider

migrate migrate a launched cluster to another Cloud provider

stop stop a launched cluster

restart restart a previously stopped cluster

 ...

Where is EC3 used?

● EGI-ACE Use cases:
○ ENES Data Space:

■ https://enesdataspace.vm.fedcloud.eu/
■ Kubernetes elastic cluster + JupyterHub

○ Protein pK a and isoelectric point calculations
■ https://pypka.org/
■ SLURM elastic cluster + NFS

● EOSC-Synergy Use cases:
○ SAPS

■ https://www.eosc-synergy.eu/supporting-science/saps/
■ Kubernetes elastic cluster + NFS

○ MSWSS
■ https://www.eosc-synergy.eu/supporting-science/mswss
■ SLURM elastic cluster + Galaxy

https://enesdataspace.vm.fedcloud.eu/
https://pypka.org/
https://www.eosc-synergy.eu/supporting-science/saps/
https://www.eosc-synergy.eu/supporting-science/mswss

Demo

$ sudo apt update

$ sudo apt install -y python3-pip

$ sudo pip3 install ec3-cli

Let's test the EC3 CLI !!!

https://github.com/grycap/ec3

https://github.com/grycap/ec3

More Information
Video tutorials and demos in YouTube:

https://youtube.com/playlist?list=PLgPH186Qwh_1IOesmaTLjd35Q-QqdWf9k

EC3 AoD portal:

https://servproject.i3m.upv.es/ec3-ltos

EC3 in EOSC Marketplace:

https://marketplace.eosc-portal.eu/services/elastic-cloud-compute-cluster-ec3

EC3 official documentation:

https://ec3.readthedocs.io/en/latest/

EC3 source code:

https://github.com/grycap/ec3

https://youtube.com/playlist?list=PLgPH186Qwh_1IOesmaTLjd35Q-QqdWf9k
https://servproject.i3m.upv.es/ec3-ltos
https://marketplace.eosc-portal.eu/services/elastic-cloud-compute-cluster-ec3
https://ec3.readthedocs.io/en/latest/
https://github.com/grycap/ec3

Which tool should I choose…?

Situation
IM EC3

IM Client IM Web EC3 CLI EC3aaS

… if I need a cluster which size is fixed or can be changed
manually?

✔ ✔

… if I need a cluster able to adapt its size to the workload
automatically?

✔ ✔

… if I need predefined recipes for well-known tools? ✔ ✔ ✔ ✔ (*)

… if I need to define my own recipes? ✔ ✔

… if I need to access a wide variety of cloud providers (public,
private, federated)?

✔ ✔ ✔

… if I need to use standard TOSCA templates? ✔ ✔ ✔

… if I want to run the tool in a docker container? ✔ ✔

… if I have to deploy a cluster from code instructions using an
API?

✔ (IM REST API or XML-RPC API)

(*) Yes, but more variety is available at the CLI version

Questions?

Contact

Amanda Calatrava

amcaar@i3m.upv.es
Miguel Caballer

micafer@upv.es

Instituto de Instrumentación para la Imagen Molecular (I3M)

Universitat Politècnica de València

@amcaar @micafer77

mailto:iblanque@dsic.upv.es
mailto:iblanque@dsic.upv.es

