

Leveraging MLflow for Efficient Deployment and Evaluation of Large Language Models

Lisana Berberi, Khadijeh Alibabaei, Borja Esteban Sanchis, Valentin Kozlov

Karlsruhe Institute of Technology

Funded by the European Union

AI4 **Seosc** Outline

- Introduction on LLM
- MLflow Evaluation and Deployment
- Open LLM Comparison
- Conclusions and Outlook

Funded by the European Union

Large Language Models (LLMs)

- Advanced machine learning model designed to
 - understand,
 - generate,
 - manipulate natural language with high accuracy
- Are built using deep learning techniques, specifically using neural network architectures like transformers [1]
- Utilized in applications:
 - question-answering,
 - content generation,
 - summarization, and
 - decision-making

Funded by the European Union

Key Characteristics of LLMs

- Scale and Size: LLMs are characterized by their large number of parameters, often ranging from one billion to hundred of billions.
 - This allows them to capture complex language patterns and nuances.
- **Training Data**: They are trained on vast amounts of text (audio, video and image) data from diverse sources such as books, articles, and websites.
 - This extensive training enables them to have a broad understanding of language.

Applications:

- **Chatbots** and Virtual Assistants: Powering intelligent conversational agents.
- **Content Creation**: Assisting in writing articles, blogs, and other content.
- Code Generation: Generating and suggesting code snippets for programming tasks.
- **Research and Education**: Assisting researchers and students with information retrieval and summarization.

Examples:

- LLaMA (Large Language Model Meta AI) by Meta.
- GPT (Generative Pre-trained Transformer) models by OpenAI (e.g., GPT-3, GPT-4).
- BERT (Bidirectional Encoder Representations from Transformers) by Google.

Funded by

the European Union 2024 | 10 | 03 by Lisana Berberi

- An open source platform for the machine learning lifecycle
- mlflow 2.16.2 (latest release)

AI4 Creosc Why MLflow for LLMs?

Resource-Efficient Evaluation with MLflow

Using MLflow to assess model performance on specific tasks without extensively deploying the model in production:

- Lightweight Evaluation: MLflow's evaluate function allows for quick performance assessments using various metrics (e.g., accuracy, BLEU score) on a subset of data.
 - This pre-deployment evaluation provides insights into the model's performance without the need for extensive computational resources.
- **Feedback Mechanism**: By logging predictions and comparing them against ground truth labels, MLflow helps identify areas where the model might need improvement (e.g., fine-tuning or additional training data).
 - This feedback loop enables iterative model refinement in a cost-effective manner.
- Avoids Costly Re-runs: Instead of deploying models in full-scale environments, which is resource-intensive, MLflow can evaluate models on sampled datasets.
 - This provides preliminary feedback on model performance, reducing the need for large-scale tests and fine-tuning iterations.
- Deploy LLM locally

mlflow models serve -m {mlflow-artifacts-uri} --port {port} --host {host}

Funded by

the European Union 2024 | 10 | 03 by Lisana Berberi

ari_grade_level()= This metric outputs a number that approximates the grade level needed to comprehend the text, which will likely range from around 0 to 15

latency()= Latency is determined by the time it takes to generate a prediction for a given input.

flesch_kincaid_grade_level()= This metric outputs a number that approximates the grade level needed to comprehend the text, which will likely range from around 0 to 15 [formula diff: includes syllable]

AI4 COE How to evaluate LLMs with MLflow?

• MLflow AI Gateway (Experimental)

The MLflow AI Gateway service is a powerful tool designed to streamline the usage and management of various large language model (LLM) providers. It offers a high-level interface that simplifies the interaction with these services by providing a **unified endpoint** to handle specific LLM related requests.

Start the Gateway Service

mlflow gateway start --config-path config.yaml --port {port} --host {host} --workers {worker count}

- MLflow's LLM evaluation functionality consists of 3 main components:
 - A model to evaluate: it can be an MLflow pyfunc model, a URI pointing to one registered MLflow model, or any python callable that represents your model, e.g, a HuggingFace text generation pipeline.
 - Metrics: the metrics to compute, LLM evaluate will use LLM metrics.
 - ari_grade_level(), etc.
 - Evaluation data: the data your model is evaluated at, it can be a pandas Dataframe, a python list, a numpy array or an <u>mlflow.data.dataset.Dataset()</u> instance.
- Our setup: 2 VMS, Tesla T4 GPU:16GB, disk: 256GB, CPU RAM:43GB

Funded by

Features	Parameter	Inference	Architecture	Time (GPU hours) /Power Consumption (W) C/ Emitted(tCO ₂ eq)	Trained date	License
Mistral (Mistral-7B-Instruct-v0.1)[2,3]	7B	Yes	-Grouped-Query Attention -Sliding-Window Attention -Byte-fallback BPE tokenizer	Not explicitly mentioned	September 2023	Apache license 2.0
Llama (Llama-2-7B-Chat-hf) [4,5]	6.7B	Yes	-The tuned versions use supervised fine-tuning (SFT) and reinforcement learning with human feedback (RLHF) to align to human preferences for helpfulness and safety.	184320/ 400/ 31.22	between January 2023 and July 2023.	Llama 2 Community License Agreement

Funded by the European Union

on 2024 | 10 | 03 by Lisana Berberi

Funded the Eur

Example of a prompt execution using AI Gateway

Served LLM model	Prompt Template View Examples
Select LLM model endpoint	Give instructions to the model. Use {{ }} or the "Add new variable" button to add variables to your prompt.
Q Search	{ <u>{var}}</u>
chat-llama	e.
llama-2-7b	var
chat-mistral mistral-7b	What is MLflow?
	+ Add new variable
	► Evaluate
	Output This is the output generated by the LLM using the prompt template and input values defined above.
	Caller

Al4 Meosc Example of two prompt executions using AI Gateway

Model parameters	П_лат П	Served LLM model
emperature (i)	e ,	chat-llama
0.01	var	Model parameters
fax tokens (i)	What is MLflow?	Temperature (i)
256	+ Add new variable	Max tokens 🛈
Stop Sequences (i)		256
	► Evaluate	Stop Sequences (i)
lew run name	Output This is the output generated by the LLM using the prompt template and input values defined above.	
overjoyed-bat-687	MLflow is an open-source platform for the end-to-end management of machine learning	New run name
	experiments. It provides a framework for tracking experiments, packaging code and data, sharing models, and deploying models to production. MLflow is designed to help teams manage the complexity of machine learning projects and improve collaboration and reproducibility.	unque-iniciPoto
	Cancel	-
0 п	hatching runs	

		Prompt Template	View Examples
a	~	Give instructions to the model. Use {{ }} or the "Add new variable" button prompt.	to add variables to your
e (i)		{[_var_]}	2
	0.01	var	
		What is <u>MLflow</u> ?	
	\$	+ Add new variable	
nces (i)		► Evaluate	
ume		Output This is the output generated by the LLM using the prompt template and in	nput values defined above.
ich-816		MLflow is an open-source platform for managing the end-to-end lifecycle. It provides a suite of tools for versioning, reproducibility, models. MLflow helps data scientists and engineers to manage the from data preparation and model training to deployment and mor production environments.	machine learning (ML) , and deployment of ML he entire ML workflow, hitoring of models in
			Cancel Create run

New run

Create a new run using a large-language model by giving it a prompt template and model parameters

Temperature (i)		ę,
•	0.01	var
Max tokens (i)		What is Spark?
256	0	+ Add new variable
New run name		Evaluate Output This is the output generated by the LLM using the prompt template and input values defined above.
overjoyed-bat-687		Spark is an open-source data processing engine that can handle large-scale data processing and analytics. It is designed to be fast, scalable, and fault-tolerant, and can be used for a wide range of data processing tasks, including batch processing, streaming processing and machine larging. Stark is written in Scale and can also be used with
		other programming languages, such as Python and Java.

Model parameters		{{ var }}
Temperature 🕕		
•	0.01	var
Max tokens 🛈		What is Spark?
256	0	+ Add new variable
Stop Sequences (i)		
		► Evaluate
New run name		Output This is the output generated by the LLM using the prompt template and input values defined above.
traveling-horse-301		Spark is an open-source data processing engine that is designed to handle large-scale data processing tasks. It was developed at the University of California, Berkeley and is now maintained by Apache. Spark is a fast and flexible engine that can handle as wide variety of data processing tasks, including batch processing, stream processing, and machine learning. Spark is written in Scala, but it also has APIs in Java, Python, and R. It can run on a variety of platforms, including Apache Hadoop, Apache Mesos, and standalone machines. Spark is highly scalable and can handle large amounts of data, making it a popular choice for big data processing tasks.
		Cancel Create run
	Ema	Atching runs

Funded by

the European Union 2024 | 10 | 03 by Lisana Berberi

×

Al4 meose

Inputs given from Alpaca and Mbpp datasets

	Alpaca dataset	
Inputs	Ground_truth	Outputs
(Question-1): Give three tips for staying healthy.	 Eat a balanced diet and make sure to include plenty of fruits and vegetables. Exercise regularly to keep your body active and strong. Get enough sleep and maintain a consistent sleep schedule. 	 Eat a balanced diet that includes plenty of fruits, vegetables, lean proteins, and whole grains. Exercise regularly, aiming for at least 150 minutes of moderate-intensity aerobic activit or 75 minutes of vigorous-intensity activity each week. Get enough sleep, aiming for 7-9 hours per night. Prioritize sleep and try to maintain a consistent sleep schedule.
	MBPP dataset	
Inputs	Ground_truth	Outputs
(Question-10): Write a python function to find the volume of a triangular prism.	def <u>find_Volume(l,b,h</u>) : return ((l * b * h) / 2)	<pre>def volume_triangular_prism(length, width, height, base_length, base_width): volume = length * width * height lateral_area = (base_length * height + base_width * length) / 2 top_area = base_length * base_width return volume + lateral_area - top_area</pre>

Comparison charts Mixtral vs Llama

Dataset 1: <u>https://huggingface.co/datasets/tatsu-lab/alpaca</u> Dataset 2: <u>https://huggingface.co/datasets/Muennighoff/mbpp</u> (python code)

*Automated Readability Index

Funded by the European Union

2024 | 10 | 03 by Lisana Berberi

Llama[alpaca] flesch_kindcaid_grade_level() Mixtral[alpaca] flesch_kindcaid_grade_level()
Llama[mbpp] flesch_kindcaid_grade_level() Mixtral[mbpp] flesch_kindcaid_grade_level()

-lower-is-better

Lower values mean **easier** readability, so they are not designed to measure the depth of **reasoning** or the **knowledge** represented in the text. These metrics assess readability in terms of sentence complexity, word length, and syllables.

Comparison charts Mixtral vs Llama

Dataset 1: https://huggingface.co/datasets/tatsu-lab/alpaca Dataset 2: https://huggingface.co/datasets/Muennighoff/mbpp (python code)

*Automated Readability Index

Funded by the European Union 2024 | 10 | 03 by Lisana Berberi

Al4 Creosc Open LLM Leaderboard [7]

Model	Average 🚹 🔺	IFEval 🔺	BBH A	MATH Lv1 5	GPQA ▲	MUSR	MMLU-PRO	Architecture	#Params (B) ▲
mistralai/Mistral-78-Instruct-v0.1	12.67	44.87	7.65	1.66	0	6.13	15.72	MistralForCausalLM	7
meta-llama/Llama-2-7b-chat-hf	9.4	39.86	4.46	0.68	0.45	3.28	7.64	LlamaForCausalLM	6

Funded by the European Union

Conclusions and Future Work

- Advanced Model Development:
 - LLMs are built using sophisticated deep learning techniques, specifically neural network architectures like transformers.
- Evaluation with MLflow:
 - Leverage MLflow functionalities to evaluate an open pre-trained LLM model on a specific dataset without deployment.
- LLM as a Judge:
 - Utilize the "LLM as a judge" (e.g. ChatGPT 4) methodology to assess model performance effectively.
- Fine-Tuning Exploration:
 - Investigate the possibility of fine-tuning one of the LLMs using the Retrieval-Augmented Generation (RAG) approach.
- Virtual Assistant Deployment:
 - Check if would be possible to deploy the fine-tuned model as a virtual assistant within the Al4EØSC platform to provide guidance and support to users.

Funded by

the European Union 2024 | 10 | 03 by Lisana Berberi

Al4 COEOSC References

- 1. Vaswani, A. "Attention is all you need." Advances in Neural Information Processing Systems (2017), https://doi.org/10.48550/arXiv.1706.03762
- 2. Huggingface Mistral-7b: https://huggingface.co/mistralai/Mistral-7B-v0.1
- **3**. Mistral-7b paper: https://arxiv.org/abs/2310.06825
- 4. Huggingface LLama-2-7b-hf: https://huggingface.co/meta-llama/Llama-2-7b-hf
- 5. Llama paper: "Llama-2: Open Foundation and Fine-tuned Chat Models"
- 6. Source code: <u>https://codebase.helmholtz.cloud/m-team/ai/llm-evaluate/</u>
- 7. Fourrier, C., Habib, N., Lozovskaya, A., Szafer, K., & Wolf, T. (2024). *Open LLM Leaderboard v2*. Hugging Face. <u>https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard</u>

Funded by the European Union

n 2024 | 10 | 03 by Lisana Berberi

Co-funded by the European Union

Reach us!

Thank you for your attention Project Coordinator: Álvaro López García - aloga@ifca.unican.es

Funded by the European Union