

Lessons learnt with ReproVIP

Sorina Camarasu-Pop

CREATIS, CNRS (UMR 5220), INSERM (U1294), INSA Lyon, Université de Lyon, France

Reproducibility Issues in Neuroimaging

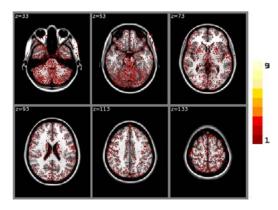
Setup

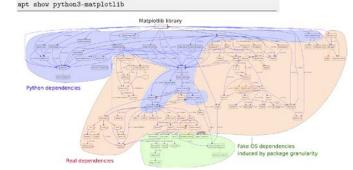
- 1 dataset
- 70 teams
- 9 hypotheses

Findings

- Analytical flexibility
- Variability of results
- Optimism bias

H1 + H3: +gain, equal indifference


<u>R. Botvinik-Nezer *et al*</u>, "Variability in the analysis of a single neuroimaging dataset by many teams" *Nature* 2020


Medical Imaging Research Laboratory www.creatis.insa-lyon.fr

Computational reproducibility issues

expf(1.54051852226257324218750000000) =4.6670093536376953125000 (glibc 2.5) expf(1.54051852226257324218750000000) =4.6670098304748535156250 (glibc 2.18)

Complex dependencies. Credits: Arnaud Legrand

import numpy as np

Large number
a = 1e16

Slightly different large number
b = 1e16 + 1

Expected difference
expected_difference = 1
#
Actual difference due to floating-point arithmetic
actual_difference = b - a
#
print(f"Expected Difference: {expected_difference}")
formit(f"Actual Difference: {actual_difference}")

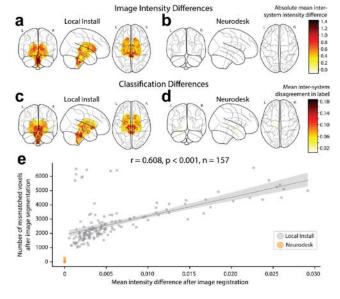
Same FSL version (5.0.6) and different versions of GNU/Linux

Sum of binarized differences between cortical tissue classifications obtained on cluster A (CentOS) and cluster B (Fedora) (FSL FAST, build 1, n = 150 subjects). Credits: Tristan Glatard, https://www.frontiersin.org/articles/10.3389/fninf.2015.00012/full

Computational reproducibility

• Main causes

CREATIS


Software dependencies and their evolution

Medical Imaging Research Laboratory

- Numerical instability due to floating point arithmetic
- Containerization
- 🔶 🔶
- Package and run an application and its dependencies
- Guix Guix
 - Functional package manager

www.creatis.insa-lyon.fr

Reproducible computational environments

<u>A.I. Renton *et al*</u>, Neurodesk Nature 2024

CREATIS

Concor

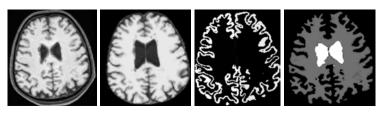
ReproVIP

- French ANR JCJC project
 - Partners: CREATIS, IPHC, Concordia University
 - https://reprovipgroup.pages.in2p3.fr/documentation
- Main objectives
 - Evaluate and improve the reproducibility of scientific results: same result when the code is executed with the same set of inputs
 - Provide an integrated, end to end solution, allowing to launch reproducible executions in a transparent manner
 - Evaluate the proposed methods and tools on medical imaging studies

The Virtual Imaging Platform

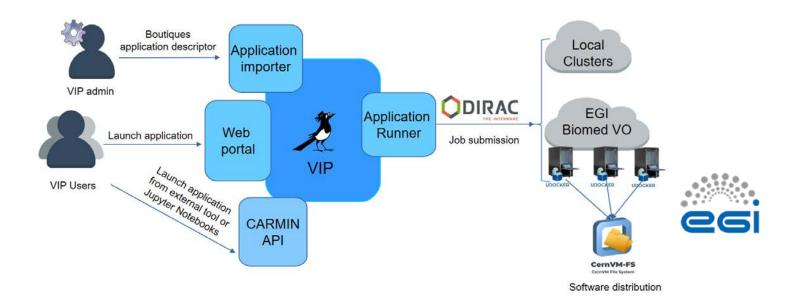
ee

• Scientific applications as a Service


- More than 25 applications publicly available
- https://vip.creatis.insa-lyon.fr/home.html

• Transparent access to computing resources

- 110+ CPU years (EGI biomed VO) used in the last 12 months
- 77 publications with results obtained on VIP
- Large community
 - More than 1500 registered users
- Open and reproducible science
 - Zenodo, DOIs, Containers, Boutiques

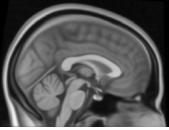


Example of white/grey matter brain segmentation with <u>Freesurfer</u> on VIP Credits : Berardino Barile and Dominique Sappey-Marinier, Creatis

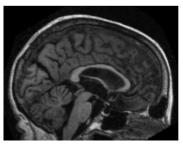
VIP eco-system

The Impact Of Hardware Variability

- The Impact Of Hardware Variability On Applications Packaged With Docker And Guix: A Case Study In Neuroimaging
 - <u>ACM REP'24</u> Best Paper award ☺
 - https://hal.science/hal-04480308v2
- Objectives
 - Evaluate the impact of hardware variability
 - Compare and correlate hardware variability to
 - Software variability encountered in different software packages
 - Numerical variability resulting from Monte Carlo Arithmetic (MCA) Random Rounding (RR)



Medical Imaging Research Laboratory www.creatis.insa-lyon.fr



original image

reference

registered image

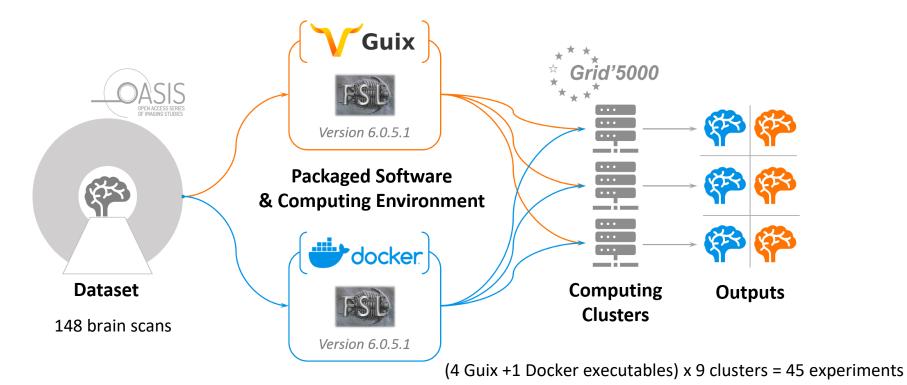
FSL FLIRT

- FMRIB Software Library (FSL)
 - Library of analysis tools for FMRI, MRI and diffusion brain imaging data
- FLIRT: FMRIB's Linear Image Registration Tool
 - Affine brain registration: align a brain scan with another one through rotation, translation, scaling and shearing
- FLIRT outputs
 - Registered brain image in NIfTI format (.nii.gz)
 - Transformation matrix in text format (.mat)

1.129633431	0.009161432163	-0.002279976965	-2.097511242
-0.0047208174	56 1.028899087	0.3437343964	-50.46994368
0.01111236612	2 -0.413128704	1.142416095	-28.62331337
0	0	0	1

Example of transformation matrix (.mat file)

Grid'5000 research infrastructure


- Large-scale testbed for experiment-driven research in computer science
- Access to a wide spectrum of hardware

Cluster	CPU	Model	Micro-arch	ISE	
uvb	Intel	Xeon X5670	Westmere	SSE4.2	
hercule	Intel	Xeon E5-2620	Sandy Bridge	AVX	
taurus	Intel	Xeon E5-2630	Sandy Bridge	AVX	
parasilo	Intel	Xeon E5-2630 v3	Haswell	AVX2	
nova	Intel	Xeon E5-2620 v4	Broadwell	AVX2	Fused Multiply-Add (FMA)
chifflot	Intel	Xeon Gold 6126	Skylake	AVX-512	
chiclet	AMD	EPYC 7301	Zen	AVX2	
neowise	AMD	EPYC 7642	Zen 2	AVX2	
abacus21	AMD	EPYC 7F72	Zen 2	AVX2	

Overview of experiments on Grid'5000

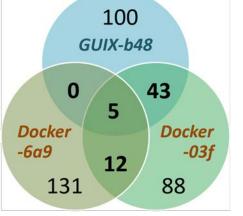
11

Hardware variability

- Comparison of global checksums
 - tarball of the 148 results for each one of the 45 experiments

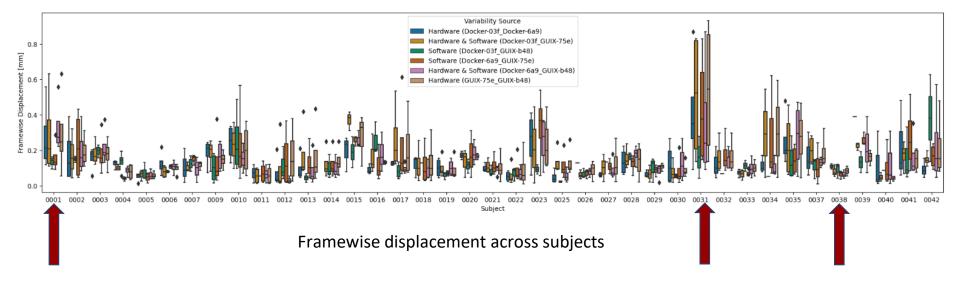
	Compilation flags	Microarchitecture of		Global
Deployment	(-march=)	the execution node	ISE	checksum
		Intel Westmere, Sandy		
Docker	x86_64	Bridge	SSE4.2, AVX	03f
		Intel Haswell,		
		Broadwell, Skylake,		
Docker	x86_64	AMD Zen, Zen 2	AVX-2	6a9
Guix	x86_64	All	SSE4.2, AVX, AVX-2	b48
Guix	sandybridge	Intel Sandy Bridge	AVX	b48
		Intel Haswell,		
		Broadwell, Skylake,		
Guix	haswell or skylake	AMD Zen, Zen 2	AVX-2	75e
Guix	sandybridge	Intel Westmere	SSE4.2	incompatibility
		Intel Westmere, Sandy		
Guix	haswell or skylake	Bridge	SSE4.2, AVX	incompatibility

Four different global checksums

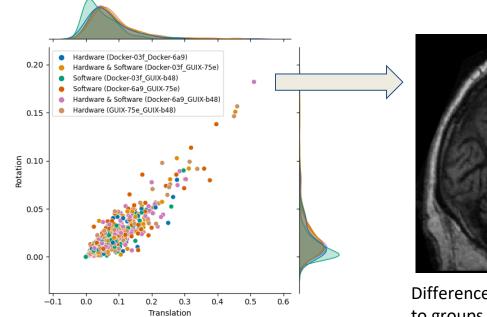

Two microarchitecture subsets: with and without AVX-2

Variability depends on input data

- Comparison of the 148 individual results among the four sets of results
- Three of the four sets share a few identical results

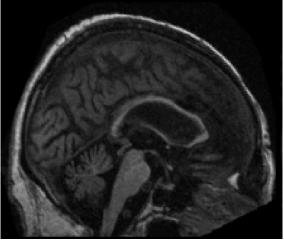


Intersections between result sets (individual matrix files) for three of the four experiments.


Variability across subjects

=> importance of using large image databases

Effects on the registration



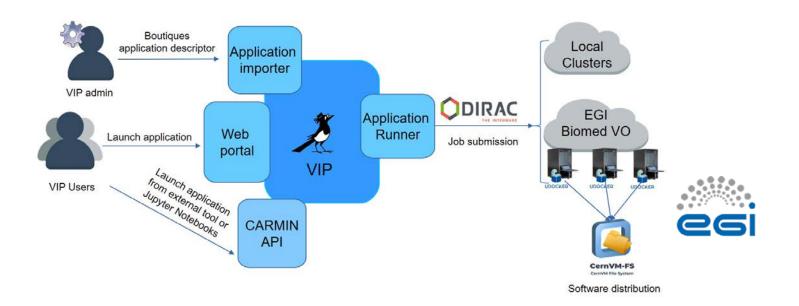
Medical Imaging Research Laboratory

www.creatis.insa-lyon.fr

CREATIS

Distributions of rotation and translation differences in the transformation matrix results ('.mat' result files)

Differences between outputs (belonging to groups Docker-6a9 and Guix-b48) with the largest difference in translation and rotation (subject 31, scan 2)


Study conclusions

- Hardware, software and numerical variability lead to variations
 - of similar magnitudes but
 - uncorrelated with each other
- Variations remained moderate but might impact downstream analyses
- In our case hardware variability was due to AVX-2 support
 - Further work is needed for a finer analysis of the differences observed
- Both packaging solutions (Docker and Guix) produced
 - Each one bit-wise reproducible results when using the same packaged FLIRT executable on equivalent micro-architectures
 - Different outputs from one another due to the software variability

Back to production

Back to production

- Use of CVMFS for software distribution
 - CVMFS uploader maintained by RAL
- Tests with FSL Guix modules (relocatable packages options)
 - Guix build sever on a VM on the SCIGNE infrastructure
 - CVMFS test server in a VM on the SCIGNE infrastructure
 - Large number of files
- Current Guix-CVMFS based solution available in VIP in test mode only

Integrated end to end solution

- VIP portal
 - Applications as a service
 - Execution sharing (Zenodo)
- Automation
 - Jupyter Notebooks (templates)
 - Python client, REST API
- Reproducibility Dashboard
 - https://vip.creatis.insa-lyon.fr:9002
- Continuous Integration (CI)
- Integration with storage platforms
 - Girder, Shanoir

Reproducibility Dashboard	Hom
Welcome on the VIP reproducibility of This dashboard allows you to consult, study and compare the results generated by medical are available to help you understand the results and their differences. For now, two applical compare them with adapted charts and metrics based on tabular data. Based on your own data (from local storage)	i imagining applications, mainly from the VIP platform. Different types of charts and metric
Compare raw results Upload your own raw results (nift or cquest format) to compare them with adapted charts and metrics. Compare your robutts	Compare tabular results Compare tabular results using your own settings. Choose axis, metrics and data to compare your results. You can also share your cettings with other users. Compare tabular results
Based on data from Girder platform (PILoT)	
Study a VIP experiment Select an experiment to study its results. Experiment results are stored on Girder with associated metrics values. Experiments data are generated by active testing in CI. Study experiment	Compare two VIP experiments Select two experiments to compare their results, and study similarity metrics. Compare experiments

ReproVIP reproducibility dashboard

Conclusions

- Computational reproducibility
 - Challenging and often over-looked
 - Various, possibly complex solutions
- VIP provides an integrated, end-to-end solution for reproducible executions of scientific applications available in VIP
 - Playground for reproducible experiments
- Reproducible and generalisable software solutions
 - Computational reproducibility is only a small aspect of a larger issue

Acknowledgements

CREATIS

XXXXXX XXXXXX

Thank you for your attention! Questions?

