
Exploring authorization
in Grid and Cloud middleware with Open Policy Agent

Federica Agostini

Missione 4 • Istruzione e Ricerca ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

EGI2024, Lecce (Italy), October 3rd 2024

Missione 4 • Istruzione e Ricerca ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

OPEN POLICY AGENT

Query inputDecision

Client request

OPA
engine

Open Policy Agent (OPA) is an open-source authorization engine

OPA is based on an high-level declarative language (Rego) that allows the
definition of policies as code

Rego is designed for expressing policies over complex hierarchical data
structures

● policy authors can focus on what queries should return rather than how they should
be executed

● Rego ensures high performance policy decisions, even with increasing number of
rules

A service which needs to take a policy decisions can query OPA with arbitrary
structured data (JSON or YAML) as input

● OPA evaluates the query input against policies and optionally data
● OPA decision is not limited by simple allow/deny answer, but can generate arbitrary

structured data as output

https://www.openpolicyagent.org/

Missione 4 • Istruzione e Ricerca ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Query input

Structured
data used by

policies
(optional)

Decision

Rego policies

OPA playground

Query inputDecision

Client request

OPA
engine

https://play.openpolicyagent.org/

Missione 4 • Istruzione e Ricerca ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

This link can be used to
share the versioned
configuration among

developers

curl example on how to
query the policies
hosted on the OPA

remote server

In our use cases, we
used to own the OPA

server which runs with
local configurations

(Rego and data)

Usage of OPA
for the Grid and Cloud

middleware

Missione 4 • Istruzione e Ricerca ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

STORM WEBDAV AND STORM TAPE

The StoRM WebDAV service provides HTTP/WebDAV access to
resources shared on a filesystem

The StoRM tape REST API is the implementation of the WLCG
Tape REST API spec, which allows to recall files stored on tape

OPA is used for authN/Z, as follows:

1. the user submits a stage request, by presenting a X509/VOMS proxy or
JWT token. The request is VOMS/TLS terminated by NGINX

2. NGINX sends the request to the OPA engine for JWT authN and
JWT/VOMS authZ

3. OPA makes the authZ decision using its policies and data. In case of
negative authZ, NGINX returns 403 Forbidden

4. in case of successful authZ, the request is forwarded to the StoRM
WebDAV or StoRM tape service

5. (and 6.) the response from the service is relayed to the user via NGINX

https://github.com/italiangrid/storm-webdav
https://baltig.infn.it/cnafsd/storm-tape
https://docs.google.com/document/d/1Zx_H5dRkQRfju3xIYZ2WgjKoOvmLtsafP2pKGpHqcfY/edit#heading=h.ozszs1lr7q93
https://docs.google.com/document/d/1Zx_H5dRkQRfju3xIYZ2WgjKoOvmLtsafP2pKGpHqcfY/edit#heading=h.ozszs1lr7q93

Missione 4 • Istruzione e Ricerca ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

STORM WEBDAV AND STORM TAPE POLICIES DEFINED WITH OPA

actions list of actions the policy is authorizing. Possible values: list, read, write,

delete, stage, all

paths list of paths the policy applies to. Use ‘**’ to match a directory and all its

content. Default to ‘**’

principals list of principals the policy applies to. Possible values:

- vo string of the VO name

- fqan allowed VOMS FQAN

- x509-subject certificate subject

- jwt-issuer token issuer which authorizes the storage operation

- jwt-group object of the allowed token issuer (iss) and group name (group)

- jwt-subject object of the allowed token issuer (iss) and subject (sub)

- jwt-scope object of the allowed token issuer (iss) and scope (scope),

which may include a path

An OPA policy (contained in a data.yaml file) is defined by:

OPA source code

OPA will replace the current StoRM
WebDAV Policy decision Point (PdP) logic,
making it also more compliant with the
WLCG JWT Profile

The same rules are applied to the StoRM
tape service, almost available in
production

The OPA rules (rego files) are versioned
and published as a bundle. The service
operators just need to update the policies
(data file)

The rules can potentially be used by any
storage service which aims to be
compliant with the WLCG JWT profile !

https://baltig.infn.it/fagostin/storm-tape-authz/
https://zenodo.org/records/3460258

Missione 4 • Istruzione e Ricerca ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

QUERYING OPA WITH STORM WEBDAV
AND STORM TAPE

Query
inputDecision

Client request

OPA
engine

(YAML)

storage-areas:
- name: cms
 root: /tmp/disk/cms
 access-point: /cms
 policies:
 - actions:

- stage
paths:
- /tape/**
principals:
- jwt-scope:

 iss: https://indigo-iam.example/
 scope: storage.stage:/
...

2

StoRM policies are
provided as data object.
The following policy
requires a parametric
storage.stage:/ scope in
the JWT in order to
submit stage requests to
the cms endpoint

{
 "allowed_files": [
 "/cms/tape/file"
],
 "denied_files": [
 "/atlas/tape/file"
],
 ...
}

A list of allowed
files is returned
to StoRM,
together with
other information

3

A stage bulk-request submission is forwarded to
OPA through NGINX in order to compute the files
allowed for staging

The original request body (list of paths) is also
forwarded, in order to match the corresponding
storage area

{
 "method": "POST",
 "path": "/api/v1/stage",
 "paths": [
 "/atlas/tape/file",
 "/cms/tape/file"
],
 "access_token": "eyJraWQiOiJyc2ExIiwiY..."
}

1

NGINX performs a POST request to OPA with
information about which files to recall and which
credential is provided. Here a JWT containing
storage.stage:/tape within its scopes is presented

Missione 4 • Istruzione e Ricerca ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

INDIGO IAM
INDIGO IAM is an authentication and authorization service which manages user
identities, enrollments, group memberships, etc. It simplifies the management
of user credentials leveraging on standard and secure OAuth/OpenID Connect
protocols
INDIGO IAM issues JWT tokens and X.509 Attribute Certificates with identity
and membership information, attributes and capabilities

Example of a
scope policy
defined in IAM

Token capabilities
determine the privileges
granted to a Client
application, expressed as
OAuth scopes

The IAM Scope Policies
provide a mechanism to
control access to token
scopes

https://wlcg.cloud.cnaf.infn.it/iam/scope_policies
(requires Admin privileges)

https://github.com/indigo-iam/iam
https://indigo-iam.github.io/v/current/docs/reference/api/scope-policy-api/
https://wlcg.cloud.cnaf.infn.it/iam/scope_policies

Missione 4 • Istruzione e Ricerca ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

INDIGO IAM POLICIES DEFINED WITH OPA

scopes list of scopes the policy applies to

matchingPolicy algorithm used to compare the requested

scopes wrt the ones defined in the policy. Possible values are

EQ (string matching), or PATH (parametric scope matching, as

described in the WLCG JWT Profile)

rule determines the behavior of the policy. Possible values

are PERMIT, or DENY

actor an object describing the entity the policy applies to (if

missing, the policy applies to everyone), identified by

- type can be subject (matching a user or a client

entity), or group

- id unique identifier for the subject or group

An OPA policy (contained in a data.json file) is defined by:

OPA source code

OPA implements and evolves the current IAM PdP logic

● more readable policy definition based on the entity the policy
applies to

● policies are also applied to clients, such to support the OAuth
client credentials flow (not bounded to a user)

The policies definition (on data file) is backward compatible
with IAM

The opa eval --profile command (plus further
options) has been used to profile the scope policies

An OPA query took
~130 ms to parse 10k
policies, which in IAM
reached the client
timeout !

https://zenodo.org/records/3460258
https://baltig.infn.it/fagostin/iam-opa-integration
https://www.openpolicyagent.org/docs/latest/policy-performance/#profiling

Missione 4 • Istruzione e Ricerca ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

QUERYING OPA WITH INDIGO IAM

Query
inputDecision

Client request

OPA
engine

[
 {
 "actor": {
 "id": "1234",
 "name": "test",
 "type": "group"
 },
 "matchingPolicy": "PATH",
 "rule": "DENY",
 "scopes": [
 "storage.read:/protected"
]
 }
]

{
 "denied_scopes": [
 "storage.read:/protected/file"
],
 "filtered_scopes": [
 "openid"
],
 ...
}

{
 "actor": {
 "groups": [
 "1234"
],
 "subject": "999"
 },
 "scopes": [
 "openid",
 "storage.read:/protected/file"
]
}

IAM performs a POST
request to OPA with
information about who
requested the token
and which scopes
wants to receive

A list of allowed
scopes is returned to
IAM, together with
other information

1

23

IAM policies are provided as
data object. The following
policy denies access to the
storage.read:/protected
parametric scope to the
“test” group

A request for the token scopes openid and
storage.read:/protected/file is forwarded to OPA
in order to compute the allowed capabilities
(filtered_scopes)

Thanks for your
attention

Missione 4 • Istruzione e Ricerca ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

USEFUL REFERENCES

● Open Policy Agent documentation

○ OPA Policy testing
○ OPA Policy performance
○ OPA Playground

● OPA source code

○ StoRM Tape AuthN/Z
○ IAM OPA integration

● VS Code plugin for OPA

https://www.openpolicyagent.org/docs/latest/
https://www.openpolicyagent.org/docs/latest/policy-testing/
https://www.openpolicyagent.org/docs/latest/policy-performance/
https://play.openpolicyagent.org/
https://baltig.infn.it/fagostin/storm-tape-authz
https://baltig.infn.it/fagostin/iam-opa-integration
https://marketplace.visualstudio.com/items?itemName=tsandall.opa

Bkp

Query OPA

$ curl http://localhost:8181 -s -d@assets/opa/input-example.json | jq
{
 "denied_scopes": [

"storage.modify:/slash/",
"storage.read:/cms/pippo",
"storage.read:/slash/pippo"

],
 "matched_policy": [
 0
],
 "filtered_scopes": [

"compute.read:/slash/pippo",
"openid",
"wlcg.groups:/pippo"

],
 …
}

{
 "actor": {
 "subject": "30559491-17b8-4bc8-84b6-7825fb7c89e5",
 "groups": [
 "1234"
]
 },
 "scopes": [
 "openid",
 "compute.read:/slash/pippo",
 "storage.read:/slash/pippo",
 "storage.read:/cms/pippo",
 "storage.modify:/slash/",
 "wlcg.groups:/pippo"
]
}

input-example.json

A simulation of IAM call-out to OPA can be done with curl

IAM performs a
POST request with
JSON-formatted
input data

15

OPA hierarchical data structure

● the dot notation is used to
descend through the hierarchy,
in order to access the
requested variable

● all values generated by rules
can be queried via the global
data variable

● input is a reserved, global
variable which binds data
provided in the query

$ curl http://localhost:8181/v1/data | jq .result
{
 "default_decision": "rules",
 "policies": [

{
 "actor": {
 "id": "1234",
 "name": "/indigoiam",
 "type": "group"
 },
 "description": "Deny storage scopes to indigoiam group",
 "matchingPolicy": "PATH",
 "rule": "DENY",
 "scopes": [
 "storage.read:/",
 "storage.create:/",
 "storage.modify:/"
]

},
...

}

OPA reorders the rego packages (with variables and rules), data/policies, tests and
configuration within a data object

16

OPA testing

OPA also provides a framework that one can use to write tests

● tests are expressed as standard Rego rules where the rule name is prefixed with test_
● the with/as keywords are used to mock input, data, rules or functions
● run tests with: opa test <file-or-directory>, plus optional flags

○ -v gives more verbosity
○ --coverage reports coverage for the policies under test
○ --var-values shows the value of variables causing failures
○ etc.

$ opa test /etc/opa/test --var-values -v
opa/test/scope_matching.rego:
data.test.test_eq_matching: PASS (515.35µs)
data.test.test_eq_not_matched: PASS (513.561µs)
...

PASS: 55/55

https://www.openpolicyagent.org/docs/latest/policy-testing/

opa eval command allows to evaluate a Rego query

The --profile option can be use to profile the policies, together with
further flags, e.g.

● --profile-sort option sorts the output by the total time the query has been computed, in
nanoseconds (this option includes --profile)

● --format=pretty enables the output as table format (default is JSON)
● --count=10 repeats the policy evaluation 10 time and enables statistics results
● --profile-limit=5 shows 5 lines of profiling results

Among other parameters, the output shows:
● NUM EVAL is the number of times an expression is evaluated
● NUM REDO is the number of times an expression is re-evaluated(redo)
● NUM GEN EXPR is the number of expression generated for a given statement in a particular line
● timer_rego_query_eval_ns is the total time OPA took to evaluate the query

OPA profiling

https://www.openpolicyagent.org/docs/latest/cli/#opa-eval
https://www.openpolicyagent.org/docs/latest/policy-performance/#profiling

$ opa eval -i assets/opa/input-example.json -d opa/rules -d assets/opa/data-example.json
"data.rules.filtered_scopes" --profile-sort total_time_ns --format=pretty
[
 "openid",
 "wlcg.groups:/pippo"
]
+--------------------------------+---------+
| METRIC | VALUE |
+--------------------------------+---------+
timer_rego_data_parse_ns	10414
timer_rego_external_resolve_ns	790
timer_rego_load_files_ns	1502719
timer_rego_module_compile_ns	5217084
timer_rego_module_parse_ns	1261957
timer_rego_query_compile_ns	71675
timer_rego_query_eval_ns	2139581
timer_rego_query_parse_ns	75006
+--------------------------------+---------+	
+-----------+----------+----------+--------------+--+	
TIME	NUM EVAL
+-----------+----------+----------+--------------+--+	
434.803µs	42
411.276µs	42
384.679µs	42
100.568µs	7
90.184µs	7
89.251µs	7
77.387µs	14
76.434µs	7
71.61µs	7
65.831µs	7
+-----------+----------+----------+--------------+--+

OPA profiling
example

19

Update the policies

$ curl https://opa.test.example/v1/data/policies -k -XPATCH -H "Content-Type:
application/json-patch+json" -d '[{"op": "add", "path": "-", "value": {
 "actor": {
 "id": "1234",
 "name": "client-credentials",
 "type": "subject"
 },
 "description": "Deny access to admin scopes to client 1234",
 "matchingPolicy": "EQ",
 "rule": "DENY",
 "scopes": [
 "iam:admin.read",
 "iam:admin.write"
]
 }
}]'

OPA supports the JSON Patch operation to update a document, as for RFC 6902.
For instance, in order to upload a policy which denies access to IAM admin scopes to the
client identified by 1234, one should submit the following request:

Now, the client-vetting policy
is appended to the previous
ones

https://www.openpolicyagent.org/docs/latest/rest-api/#patch-a-document
https://datatracker.ietf.org/doc/html/rfc6902

Pros & counts

Pros

● very powerful tool !
● easy policy definition language – also for basic developers
● very fast, even without caching
● a lot of documentation
● OPA playground service very useful to start coding and sharing policies among colleagues
● a VS Code plugin (supporting also the Language Server Protocol through Regal) is available to help

the development phase
● used in industry
● very well maintained

Cons

● not so many examples in stack overflow for instance, and blogs just apply the documentation
○ but, I have found many suggestion into GitHub issues
○ let’s start all together!

21

https://play.openpolicyagent.org/
https://marketplace.visualstudio.com/items?itemName=tsandall.opa
https://docs.styra.com/regal

NGINX role in the StoRM Tape deployment

● NGINX is an open-source HTTP server
and reverse proxy known for

○ high performance
○ high stability
○ rich feature set
○ simple configuration
○ low resource consumption

● The service has been chosen as part of
this deployment for

○ VOMS/TLS termination
○ Authentication with JWT

22

load_module modules/ngx_http_voms_module.so;
load_module modules/ngx_http_js_module.so;
…
server{
 …
 location /api/v1 {
 auth_request /authz;
 proxy_set_header X-SSL-Client-S-Dn $ssl_client_s_dn;
 proxy_set_header x-voms_fqans $voms_fqans;
 …
 proxy_pass http://storm-tape:8080;
 }
 location /authz {
 internal;
 js_var $trusted_issuers
"https://wlcg.cloud.cnaf.infn.it/,https://cms-auth.web.cern.ch/";
 js_content auth_engine.authorize_operation;
 }
 location /_opa {
 internal;
 …
 proxy_pass http://opa:8181/;
 }
}

nginx.conf

E.g.: POST https://storm-tape.test.example/api/v1/stage

https://nginx.org/en/docs/

NGINX role in the StoRM Tape deployment

An auth_engine.js module has been written at CNAF
in order to

● check the presence of a JWT in the HTTP
Header and, in case, validate it

● check the presence of X.509/VOMS variables
(voms_fqans, ssl_client_s_dn)

● pass the above data with a POST request to OPA
and handle its response

23

load_module modules/ngx_http_voms_module.so;
load_module modules/ngx_http_js_module.so;
…
server{
 …
 location /api/v1 {
 auth_request /authz;
 proxy_set_header X-SSL-Client-S-Dn $ssl_client_s_dn;
 proxy_set_header x-voms_fqans $voms_fqans;
 …
 proxy_pass http://storm-tape:8080;
 }
 location /authz {
 internal;
 js_var $trusted_issuers
"https://wlcg.cloud.cnaf.infn.it/,https://cms-auth.web.cern.ch/";
 js_content auth_engine.authorize_operation;
 }
 location /_opa {
 internal;
 …
 proxy_pass http://opa:8181/;
 }
}

nginx.conf

async function authorize_operation(r) {
 …
 r.subrequest("/_opa", opts, function (opa_res) {

 const body = JSON.parse(opa_res.responseText);

 if (!body || !body.allow) {
 r.return(403);
 return;
 }
 r.return(200);
 }
}

auth_engine.js

NGINX+VOMS role in the StoRM Tape deployment

● ngx_http_voms_module is a module for NGINX
which

○ enables client-side authentication based on
X.509 proxy certificates

○ developed at INFN-CNAF

● it defines a set of embedded variables whose
values are extracted from the Attribute Certificate

○ e.g. the voms_fqans

24

https://baltig.infn.it/cnafsd/ngx_http_voms_module

OPA role in the StoRM Tape deployment: example

25

Request with data input
(any JSON value)

OPA decision
(any JSON value)

client request

GET /api/v1/stage/<id>
allow if {
 input.method == "GET"
 glob.match("/api/v1/stage/*", ["/"], input.path)

 any([read_scopes_allowed, voms_fqans_allowed, certificate_dn_allowed])
}

has allowed
WLCG scopes?

has allowed
FQANs?OR has allowed

DN?OR

{
 "method": "GET",
 "path": "/api/v1/stage/9a8e34bd-73fe-4b43-9139-1c5f6711577c",
 "client_s_dn": "CN=test0,O=IGI,C=IT"
}

{
 "allowed_dn": [
 "CN=John Doe jhondoe@infn.it,O=Istituto Nazionale di Fisica
Nucleare,C=IT,DC=tcs,DC=terena,DC=org",
 "CN=test0,O=IGI,C=IT"
],
 …
}

OPA role in the StoRM Tape deployment: example

26

{
 “allow”: “true”
}

{
 "method": "GET",
 "path": "/api/v1/stage/9a8e34bd-73fe-4b43-9139-1c5f6711577c",
 "client_s_dn": "CN=test0,O=IGI,C=IT"
}

{
 "allowed_dn": [
 "CN=John Doe jhondoe@infn.it,O=Istituto Nazionale di Fisica
Nucleare,C=IT,DC=tcs,DC=terena,DC=org",
 "CN=test0,O=IGI,C=IT"
],
 …
}

GET /api/v1/stage/<id>
allow if {
 input.method == "GET"
 glob.match("/api/v1/stage/*", ["/"], input.path)

 any([read_scopes_allowed, voms_fqans_allowed, certificate_dn_allowed])
}

has allowed
WLCG scopes?

has allowed
FQANs?OR has allowed

DN?OR

Example of IAM scope policies
https://wlcg.cloud.cnaf.infn.it/iam/scope_policies

(requires Admin privileges)

compute scopes
allowed only to
wlcg/pilot
group

storage
scopes allowed
only to
wlcg/xfer
group

27

https://wlcg.cloud.cnaf.infn.it/iam/scope_policies

Project folder tree

opa
├── config.yaml
├── policies
│ └── data.json
├── rules
│ ├── entity_matching
│ │ └── entity_matching.rego
│ ├── entity_type.rego
│ ├── policy_evaluation_order.rego
│ ├── policy.rego
│ └── scope_matching.rego
└── test

├── entity_matching
│ └── entity_matching.rego
├── entity_type.rego
├── policy_evaluation_order.rego
├── policy.rego
└── scope_matching.rego

One rego file per
operation

One test file per
rego file

Policy entity matcher
(based on
actor.id/type)

Contains OPA configuration: default decision,
authentication to OPA, enable caching results, etc.

A list of policy objects

Source code

28

https://baltig.infn.it/fagostin/iam-opa-integration

To do
Development:

● add audience policies:
○ e.g. the https://wlcg.cern.ch/jwt/v1/any audience can be obtained only by a certain group

● implement a real path algorithm to match path-parametric scopes

○ it is now just a prefix match of the requested scope
○ only scopes that matched a prefix plus "/" should be allowed
○ the rule matching the longest path wins

■ e.g. a policy on the storage.read:/home overrides the one defined for the storage.read:/
scope

Deployment:
● deploy a test IAM instance which supports OPA

○ deployment model is now only based on docker-compose and includes only OPA
○ play with OPA configuration (e.g. caching) to enhance performances

● decide which authentication mechanism apply to whom operates OPA (e.g. for adding policies)
○ OPA supports Bearer Authentication, Basic Authentication, etc.

29

