

A novel approach for a Digital Twin to explore future climate extremes to assess impacts

EGI2024 Conference, Sep 30 – Oct 2, 2024 Lecce, Italia Christian Pagé, CERFACS Use Case Lead Anne Durif, CERFACS Research Engineer

The Challenge: Climate Extremes

Generic detection algorithm:

- Intense rainfall
- Drought
- Heatwave
- Cold spell
- High wind

Different methods for one-time events (intense rainfall, high wind) vs. longer-term events (droughts,...)

Characterization (What-if Scenarios):

- Frequency of occurrence
- Spatial extent
- Intensity (if relevant)
- Duration

Pictures: The Guardian, World Meteorological Organization, WMO, Patch, Direct Energy

The Challenge: Climate Extremes

2021 Germany Erftstadt, southwest of Cologne

2020 Hurricane Delta causes damage to Louisiana's Gulf Coast

- Urgent needs of impact assessments
- Identify mitigation solutions
- Extreme events attribution
- Multiple domains: infrastructures, urban, agriculture, transportation, etc.
- Flexible tools needed for very diverse users

Climate Indices and Indicators

- Intra-period extreme temperature range [°C] ETR
- Warm days (days with mean temperature > 90th percentile of daily mean temperature) TG90p
- Summer days (days with max temperature > 25 °C) ${\rm SU}$

-...

icclim python package

https://github.com/cerfacs-globc/icclim

12 Construction of the con

Extreme Workflow: the User Perspective

5

Why use a AI based method?

- To analyze a very large database of climate scenarios with a good performance
- Use efficiently new architectures (GPUs)
- Scalability in cloud-based environments
- Extreme Events spatial structures are similar to avalanches
 - Variational Autoencoder: Deep Learning Technique

Deep Learning Method

Convolutional Variational Auto-Encoder (CVAE)

Data...

Raw Data

- Coupled Model Intercomparison Project, phase 6 (CMIP6)
- General Circulation Models (e.g. CMCC-ESM2)
- 1°×1° resolution (~125km spatial grid)
- Daily data from 1850 to 2100
- · Climate variables: temperature, precipitations, wind...
- · Various carbon emission scenarios (IPCC):
 - □ SSP1-2.6, SSP2-4.5, SSP3-7.0, SSP5-8.5

Preprocessing

- · From NetCDF files to numpy tables
- 32×32 square over Western Europe
- · Season split
- Min-max normalization

Fast comparison between GES

Comparison between IPCC Scenarios

Reconstruction Errors in CMCC-ESM2 Model Summers

Anomaly Analysis in CMCC-ESM2 Model (Summers) Detection when the reconstruction error exceeds a threshold

	2001-2014	2015-2100				
Scenario	Test data	SSP1-2.6	SSP2-4.5	SSP3-7.0	SSP5-8.5	
Proportion of unusual days	1,00%	3,78%	8,09%	11,07%	17,83%	
Maximum spike	0,0051	0,0053	0,0089	0,0087	0,0095	
Maximum duration (days)	5	22	27	53	55	
Average duration (days)	2	3,44	5,66	6,17	7,51	

Large Ensemble Data Analysis

Comparison between ensemble members

Anomaly Analysis in CESM2 Model Member Comparison for Scenario SSP3-7.0

	1850-1950	1950-2100					
Member a*	Test Data - 5	\$\$P3-7.0 - 1	55P3-7.0 - 2	SSP3-7.0 - 3	SSP3-7.0 - 4	SSP3-7.0 - 5	
Unusual days	92	3530	3614	3931	3455	3798	
Proportion of unusual days	1,00%	25,41%	26,0256	28,30%	24,87%	27,34%	
Maximum spike	0,112	0,123	0,119	0,120	0,119	0,121	
Average maximum	0,1094	0,1108	0,1108	0,1110	0,1109	0,1110	
Maximum duration (days)	7	83	77	81	81	78	
Average duration (days)	2,4	9,7	9,9	10,4	9,7	10.5	
Proportion of spikes	39	91	91	94,25	88,75	90,25	

Integration with interTwin DTE

- Integration with itwinai and DTE Core Components (unlocks additional functionalities)
 - Extensive Logging
 - Hyper-Parameters' Optimization
- Containerization

winai / u	nai / use-cases / xtclim / pipeline.yaml 🖟				
🕡 r-sa	rma Bug fixes and addition of CERFACS use-case (#151) 🚥 🗸				
Code	Blarme 31 lines (29 loc) · 922 Bytes				
1	# General configuration				
	dataset root. !/n/scratch/intertwin/datasets/carfacs/!				
	enochs: 3				
	batch size: 10				
	lr: 0.001				
	scenario: '245'				
	strategy: 'ddp'				
8					
	# Workflows				
10	pipeline:				
11	class path: itwinai.pipeline.Pipeline				
12	init_args:				
13	steps:				
	preprocessing-step:				
	class_path: preprocessing.preprocess_functions_2d_ssp.PreprocessData				
	init_args:				
17	<pre>dataset_root: \${dataset_root}</pre>				
	scenario: \${scenario}				
	preprocessing-split-step:				
20	class_path: preprocessing.preprocess_2d_seasons.SplitPreprocessedData				
	init_args:				
	scenario: \${scenario}				
	training-step:				
	<pre>#class_path: src.trainer_dist.XTClimTrainer</pre>				
	class_path: src.trainer.TorchTrainer				
	init_args:				
	epochs: \${epochs}				
	<pre>batch_size: \${batch_size}</pre>				
	lr: \${lr}				
30	<pre>#strategy: \${strategy}</pre>				

Integration with interTwin DTE

- Advanced workflow composition (CWL)
- Integration with the interTwin
 Data Lake
 - Rucio
 - STAC Catalog
 - ENES Data Lake

Source: itwinai Documentation

https://itwinai.readthedocs.io/latest/how-it-works/workflows/explain_workflows.html

Integration with interTwin DTE

Perspectives

- Exploitation of geospatial information
- Implementation of a severity index
- Exploitation of the latent space of the Neural Network
- Validation against analytical method for robustness assessment (icclim)
- **Extensions** to other climate variables

Take-Home Messages

- interTwin DTE enables fast Digital Twin Application Development and Exploitation
- The Convolutional Variational Auto-Encoder (CVAE) achieves
 Unsupervised Anomaly Detection
- Events can be **characterized** with various indicators
- Results are **consistent**
- Performance of this approach unlocks the ability to better quantify

climate change impact uncertainties

Questions?

Christian Pagé christian.page@cerfacs.fr

LI @pagechristian

