
www.egi.euEGI-InSPIRE RI-261323

EGI-InSPIRE

www.egi.euEGI-InSPIRE RI-261323
29/03/2012 1

GC3Pie:
a Python framework for

high-throughput computing

Sergio Maffioletti
Grid Computing Competence Center (GC3)

University of Zürich

www.egi.euEGI-InSPIRE RI-261323

What is GC3Pie?

GC3Pie is a Python toolkit: it provides the building
blocks to write Python scripts to run large
computational campaigns (e.g., to analyze a vast
dataset or explore a parameter space), and to
combine several tasks into a dynamic workflow.

www.egi.euEGI-InSPIRE RI-261323

GC3Pie's components architecture

www.egi.euEGI-InSPIRE RI-261323

GC3Pie execution model

GC3Pie provides data structures for controlling the execution of
Applications on computing resources.

GC3Pie allows:

Uniform access to distributed computing resources

Automatic authentication control

Creation of large collections of Applications as composite unites

Direct and/or delegated control of Application execution process
(core and engine)

Combine different collections of Applications into a dynamic
workflow

www.egi.euEGI-InSPIRE RI-261323

A typical high-throughput use case?

● Run a generic Application on a range of different
inputs; where each input is a different file (or a set of
files).

● Then collect output files and post-process them, e.g.,
gather some statistics.

● Typically implemented by a set of sh or Perl scripts to
drive execution on a local cluster.

www.egi.euEGI-InSPIRE RI-261323

GC3libs application model

● An application is a subclass of the gc3libs.Application
class.

● Generic Application class patterned after ARC’s xRSL
model.

● At a minimum: provide application-specific command-
line invocation.

● Possible to customize pre- and post-processing, react
on state transitions, set computational requirements
based on input files, influence scheduling. (This is
standard OOP: subclass and override a method.)

www.egi.euEGI-InSPIRE RI-261323

GamessApplication

class GamessApplication(gc3libs.Application):

 def __init__(self, inp_file_path,
*other_input_files, **kw):

 gc3libs.Application.__init__(self,

 executable = "$GAMESS_LOCATION/nggms",

 arguments = arguments,

 inputs = (inp_file_path, input_file_name),

 outputs = [output_file_name],

 join = True,

 **kw)

www.egi.euEGI-InSPIRE RI-261323

GamessApplication

def terminated(self):

 ...

 if match.group('ddikick_outcome') == 'unexpectedly':

 self.execution.exitcode = 2

 elif match.group('ddikick_outcome') == 'gracefully':

 self.execution.exitcode = 0

 ...

www.egi.euEGI-InSPIRE RI-261323

GC3Pie's execution model

www.egi.euEGI-InSPIRE RI-261323

The Engine class

Implements core operations on applications, with non-
blocking semantics.

The progress() method will advance jobs through their
lifecycle; use state-transition methods to take
application-specific actions. (e.g.,post-process output
data.)

An engine can automatically persist the jobs, if you so
wish. (Just pass it a Store instance at construction
time.)

www.egi.euEGI-InSPIRE RI-261323

How do I manage authentication ?

You don’t.
● GC3Libs will checks that there is always a valid proxy and

certificate when attempting Grid operations, and if
necessary, renews it.

● The SSH authentication (when required) is assumed
granted by an external entity (e.g ssh-agent)

● Each computing resource has its own authentication
profile. In gc3pie.conf is possible to link an authentication
profile with one or more resources

www.egi.euEGI-InSPIRE RI-261323

How do I manage authentication ?

[auth/cluster]

type = ssh

username = sergio

[auth/smscg]

type = voms-proxy

cert_renewal_method = slcs

idp = uzh.ch

vo = smscg

[resource/nor]

type = arc1

auth = smscg

...

www.egi.euEGI-InSPIRE RI-261323

A high-throughput script,
revisited with GC3Libs

1. Create a gc3libs.core.Engine instance and load
saved jobs into it

2. Create new instance(s) of the specialized
Application class

3. Let engine manage jobs until all are done

4. Retrieve results (the Engine does it)

5. Postprocess and display

You only need to implement 2. and 5.; the rest is
done by a SessionBasedScript class.

www.egi.euEGI-InSPIRE RI-261323

High-throughput GAMESS analysis:
ggamess

ggamess mainly has been designed for a method to predict reaction
pathways for molecules without usage of chemical knowledge
(hypersphere method[1])

ggamess scans the specified INPUT directories recursively for '.inp' files,
and submit a GAMESS job for each input file found; keeps a record of
jobs (submitted, executed and pending) in a session file; job progress is
monitored and, when a job is done, its '.out' and '.dat' file are retrieved
back either to the submission host or to a gridFTP compliant storage
service.

For this example, a single ggamess session has generated DFT-energy
calculation for 17713 molecules on the ARC-based SMSCG
infrastructure (failure rate: 0.05%)

www.egi.euEGI-InSPIRE RI-261323

ggamess

www.egi.euEGI-InSPIRE RI-261323

ggamess.py

import gc3libs
from gc3libs.application.gamess import GamessApplication
from gc3libs.cmdline import SessionBasedScript

class GGamessScript(SessionBasedScript):
 def __init__(self):
 SessionBasedScript.__init__(
 self,
 application = GamessApplication,
 input_filename_pattern = '*.inp'
)

run it
if __name__ == '__main__':
 GGamessScript().run()

Check
yourself !

http://code.google.com/p/gc3pie/

http://code.google.com/p/gc3pie/source/browse/tags/1.0/gc3pie/gc3apps/gamess/ggamess.py

www.egi.euEGI-InSPIRE RI-261323

Supported Applications

System biology:

grosetta – 10000 jobs/run

Ecomony models:

gprepium – 40000 – 80000 jobs/run

Compchem:

cchem_gfit_abc_workflow – UML based

ggamess (Gamess) 17000 jobs/run

gricomp (Turbomole) not extensively tested yet

Institute of Research and Operation:

george – not extensively tested yet

Crypto:

gcrypto – 1000 jobs/run

Evolutionary Biology and Environmental Studies:

gcodeml – 10000 jobs/run

gmhc_coev (Matlab) – UML based

Geography

ggeotop – 1000 jobs/run

www.egi.euEGI-InSPIRE RI-261323

Workflows with GC3Pie

GC3Pie encourages a compositional approach for building workflows: the
basic unit in a workflow is called a Task; tasks can be grouped into
collections, which prescribe the order in which tasks are executed.

The classes SequentialTaskCollection and ParallelTaskCollection are the
basic compositions of Tasks; by subclassing them you define how to
coordinate the execution of Tasks. For example, retry the execution of a
certain step in a sequence, or stop a parallel parameter sweep when a
certain percentage of the tasks in it are successfully done.

TaskCollections are mutable objects, so Python code can alter them on the
fly, while a composition is running. This allows the creation of dynamic
workflows, whose structure is not fixed in advance, rather built in response
to external events.

www.egi.euEGI-InSPIRE RI-261323

Composition of tasks (I)

 The unit of job composition is called a Task in
GC3Libs.

 An Application is the primary instance of a Task.

 A task is a composite object: tasks can be
composed of other tasks.

 Workflows are built by composing tasks in
different ways. A workflow is then a task, too.

www.egi.euEGI-InSPIRE RI-261323

Composition of tasks (II)

● The SequentialTask class takes a list of jobs and
executes them one after the other.

● Subclass and override the next() method to
determine early exit conditions, or to modify the list of
tasks dynamically.

● The ParallelTask class takes a list of jobs and
executes all of them in parallel.

● It’s done when all jobs are done: there’s an implicit
synchronization barrier at the end.

www.egi.euEGI-InSPIRE RI-261323

How is GC3Pie different?

 Most execution engines represent workflows as data (e.g., some XML
format). GC3Pie lets you write Python code instead: you write your
workflow as a set of Python classes so the entire workflow logic is
expressed in a plain programming language. This means that it is easy to
create loops and conditionally branch execution, for example.

 Unlike other Python frameworks for distributing computation, e.g., Celery or
Pyro, GC3Pie is designed to coordinate the execution of independent
Applications (often pre-existing and written in another language): with
GC3Pie you write Python code to steer the computation, not to perform it.

www.egi.euEGI-InSPIRE RI-261323

Conclusions

GC3Pie helps manage the logistics of running thousands of
jobs and collecting the results.

It abstracts away the small differences in grids & clusters so
you can build workflows that utilize all your resources at once.

Created at the University of Zurich's Grid Computing
Competency Center (GC3) http://www.gc3.uzh.ch/

Open-source, hosted at http://code.google.com/p/gc3pie/

www.egi.euEGI-InSPIRE RI-261323

A workflow example

This workflow shows how a differential evolution
optimizer is implemented with the GC3Pie library to
support the analysis of a computationally intense
economic model.

Each workflow execution spawns between
40000 and 80000 jobs
on the Swiss DCI infrastructure SMSCG
(http://www.smscg.ch)

Benjamin Jonen, Simon Scheuring,
Institut für Banking und Finance,
University of Zurich
http://www.ibf.uzh.ch/

www.egi.euEGI-InSPIRE RI-261323

a workflow example - step 1

class GFPScript(SessionBasedScript):
 def new_tasks(self):
 for ctry1, ctry2 in self.country_pairs:
 # add tasks to the session
 yield (jobname,# unique identifier
 GFPSequence # task class
 [args], # creation arguments
 { kwargs })# creation keywords

www.egi.euEGI-InSPIRE RI-261323

a workflow example - step 2

class GFPSequence(SequentialTaskCollection):
 def __init__(self, ...):
 SequentialsTaskCollection.__init__(
 self, [tasks], ...)
 def next(self, done):
 if self.tasks[done].converged == True:
 return Run.State.TERMINATED
 else:
 # run another optimization step,
 # with altered parameters
 new_params = ...
 self.tasks.add(GFParallel(new_params))

www.egi.euEGI-InSPIRE RI-261323

a workflow example - step 3

class GFPParallel(ParallelTaskCollection):
 def __init__(self, params..., **kwargs):
 # create Task collection from parameters
 tasks = [GFPApplication(...)]
 ParallelTaskCollection.__init__(
 self, tasks, **kwargs)

www.egi.euEGI-InSPIRE RI-261323

a workflow example - step 4

class GFPApplication(Application):
 def __init__(self, ...):
 Application.__init__(
 executable="./forwardPremiumOut",
 arguments=["1", "2", "3"],
 inputs=["input.file.name"],
 outputs=["out.file", "out.directory"])

 def terminated(self):
 # this gets called once the Task is done
 if "simulation.out" in self.outputs:
 self.execution.returncode = 0 # success
 else:
 self.execution.returncode = 1 # fail!

www.egi.euEGI-InSPIRE RI-261323

Chunked parallel execution

Cryptographic code to search within a large
rangespace (800M – 2400M increment
1000)

Need to dilute the submission process to
avoid infrastructure flood

www.egi.euEGI-InSPIRE RI-261323

Chunked parallel execution

Approach:

ParallelTaskCollection class that divide the
overall parameter range into chunks

class ChunkedParameterSweep(ParallelTaskCollection):

def __init__(self, jobname, min_value, max_value, step,
chunk_size, grid=None):

Every update cycle, the chunk is updated with new jobs
(thus keeping the chunk size constant)

www.egi.euEGI-InSPIRE RI-261323

www.egi.euEGI-InSPIRE RI-261323

Chunked parallel execution

Approach:

ParallelTaskCollection class that divide the
overall parameter range into chunks

class ChunkedParameterSweep(ParallelTaskCollection):

def __init__(self, jobname, min_value, max_value, step,
chunk_size, grid=None):

Every update cycle, the chunk is updated with new jobs
(thus keeping the chunk size constant)

www.egi.euEGI-InSPIRE RI-261323

Chunked parallel execution

Approach:

ParallelTaskCollection class that divide the overall
parameter range into chunks

def new_task(self, param, **kw):

 """

 Create a new `CryptoApplication` for computing the range

 `param` to `param+self.parameter_count_increment`.

 """

 return CryptoApplication(

 param, self.step, self.gnfs_location,
self.input_files_archive, self.output_folder, **kw)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

