AEGIS CMPC
Scientific Gateway

Petar Jovanović
Nikola Grkić, Dušan Vudragović, Antun Balaž
Scientific Computing Laboratory, Institute of Physics Belgrade
University of Belgrade, Serbia
Overview

- AEGIS CMPC Applications
- AEGIS CMPC Architecture
- gUSE/WS-PGRADE Portal
- AEGIS CMPC Scientific Gateway
- AEGIS CMPC Database Backend
- AEGIS CMPC DCI
- Acknowledgment
- References
AEGIS CMPC Applications

- **AEGIS**
 Academic and Educational Grid Initiative of Serbia
- **CMPC**
 Condensed Matter Physics Community
- **AEGIS CMPC SG**
 Provides access to three applications
 - **SPEEDUP**
 Monte Carlo (MC) based path integral algorithm for calculation of quantum mechanical transition amplitudes for 1D models.
 - **QSPEEDUP**
 quasi-Monte Carlo (MC) based path integral algorithm for calculation of quantum mechanical transition amplitudes for 1D models.
 - **GP-SCL**
 Set of codes for calculating both stationary and non-stationary solutions of the time-dependent Gross-Pitaevskii (GP) equation in one, two, and three space dimensions in a trap using imaginary-time and real-time propagation.
AEGIS CMPC ARCHITECTURE [1/2]

Architecture consists of four main components:

- AEGIS CMPC gUSE/WS-PGRADE Portal
- AEGIS CMPC Database backend
- AEGIS CMPC Scientific Gateway
- CMPC.AEGIS.RS DCI (EMI/gLite based)

AEGIS CMPC Scientific Gateway
- End user interface
- Google Web Toolkit

AEGIS CMPC gUSE/WS-PGRADE Portal
- Workflow Interpreter
- DCI Bridge
- Remote API
- Localhost resource
- Distributed Computing Resources
 - gLite middleware (cmpc.aegis.rs)

CouchDB

RESTful web service

Job submission engine

AEGIS CMPC DB
AEGIS CMPC Architecture [2/2]

- Architecture provides two main interfaces
 - End user interface
 - Workflow developer interface

End user interface:
- Google Web Toolkit

Workflow developer interface:
- Workflow submission
- Workflow output

AEGIS CMPC Scientific Gateway
- End user interface

AEGIS CMPC gUSE/WS-PGRADE Portal
- DCI Bridge
 - localhost resource

AEGIS CMPC DB
- CouchDB

Job submission engine
- DCI Bridge
 - gLite middleware (cmpc.aegis.rs)

RESTful web service
- workflow submission
- workflow output

New configuration
Workflow Developer Interface

(Q)SPEEDUP Workflow:

- **Preparation**

 DB > JSON conf. > APP. conf. + APP. stream mng.

- **Execution**

 APP. job submission to EMI/gLite-based infrastructure

- **Result Publication**

 APP. output + TECH. metadata > JSON output > DB
End user interface provides

- Summary of collected numerical results per configuration of the physical system
- Querying of available physical system configuration
- Submission of new physical system configuration
- Allows overview of the results without authentication
- Performs authentication for the submission of new configuration

Developed in Google Web Toolkit environment

Deployed through the Apache Tomcat engine
AEGIS CMPC Database Backend

- **Document-oriented database**
 - CouchDB technology
- **CouchDB RESTful web-service**
- **extended with three layers**
 - AuthN/AuthZ layer
 - Tracking layer
 - Merging layer
- **AuthN/AuthZ**
 - username/password
 - X.509 cert.
 - X.509 proxy cert.
- **Predefined JSON structures**
 - speedup_cfg
 - speedup_job
 - speedup_out
 - QSpeedup_cfg
 - etc.
- **Dedicated VO:** cmpc.aegis.rs

 https://voms.ipb.ac.rs:8443/voms/cmpc.aegis.rs

- **CMPC.AEGIS.RS** supported by
 - 6 production sites
 - More than 1000 CPUs
 - More than 30 TBs

- **Application binaries**
 preinstalled in VO software
 area on each Grid site
The research leading to these results has received funding from the SCI-BUS project, supported by the European Commission Seventh Framework Programme (FP7) (grant agreement no. RI-283481), and from the national research project ON171017, supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia.