H2020 INFRASUPP-4 CSA Project EDISON

Defining the Data Science Competence Framework

Overview of Existing Studies and Proposed Approach

Yuri Demchenko, Adam Belloum
University of Amsterdam

EGI Community Forum 10-13 November 2015
Bari, Italy

EDISON – Education for Data Intensive Science to Open New science frontiers
Grant 675419 (INFRASUPP-4-2015: CSA)
Outline

• EDISON approach
 – From Data Science Competences to Body of Knowledge and Model Curriculum

• e-CF3.0 overview and analysis

• Data Science essential skills required
 – Demand side and job market analysis

• Organisational workflow/processes and role of Data Scientist

• Further steps - Survey and questionnaires
EDISON Approach: e-CFv3.0 and CF-DS

- Competence Framework for Data Science (CF-DS) definition will be built based on European e-Competence framework for IT (e-CFv3.0)
 - Linking scientific research lifecycle, organizational roles, competences, skills and knowledge
 - Defining Data Science Body of Knowledge (DS-BoK)
 - Mapping CF-DS and DS-BoK to academic disciplines

- Multiple use of e-CFv3.0 within ICT organisations
- Provides basis for individual career path, competence assessment, training and certification

- EDISON CF-DS will be used for defining DS-BoK and MC-DS, linking organizational functions and required knowledge
- Provide basis for individual (self) training and certification
European e-Competence Framework 3.0 Overview

<table>
<thead>
<tr>
<th>Dimension 1</th>
<th>Dimension 2</th>
<th>Dimension 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 e-CF areas (A–D)</td>
<td>40 e-Competences identified</td>
<td>e-Competence proficiency levels e-1 to e-5, related to IOP levels 3–8</td>
</tr>
</tbody>
</table>

A. PLAN
- A.1. IS and Business Strategy Alignment
- A.2. Service Level Management
- A.3. Business Plan Development
- A.5. Architecture Design
- A.6. Application Design
- A.7. Technology Trend Monitoring
- A.8. Sustainable Development
- A.9. Innovating

B. BUILD
- B.1. Application Development
- B.2. Component Integration
- B.3. Testing
- B.4. Solution Deployment
- B.5. Documentation Production
- B.6. Systems Engineering

C. RUN
- C.1. User Support
- C.2. Change Support
- C.3. Service Delivery
- C.4. Problem Management

D. ENABLE
- D.1. Information Security Strategy Development
- D.2. ICT Quality Strategy Development
- D.3. Education and Training Provision
- D.4. Purchasing
- D.5. Sales Proposal Development
- D.6. Channel Management
- D.7. Sales Management
- D.8. Contract Management
- D.9. Personnel Development
- D.10. Information and Knowledge Management
- D.11. Needs Identification
- D.12. Digital Marketing

E. MANAGE
- E.1. Forecast Development
- E.2. Project and Portfolio Management

4 Dimensions
- Competence Areas
- Competences
- Proficiency levels
- Skills and Knowledge

5 Competence Areas defined by ICT Business Process stages
- Plan
- Build
- Deploy
- Run
- Manage

- Refactor to Scientific Research (or Scientific Data) Lifecycle
 - See example of RI manager at IG-ETRD wiki and meeting

Each competence has 5 proficiency levels
- Ranging from technical to engineering to management to strategist/expert level

Knowledge and skills property are defined for/by each competence and proficiency level (not unique)
EDISON CF-DS profile(s) and e-CF3.0

Edison Profile(s)
For Data Science

1. Define **CF-DS profile** using input from
 1. Demand/Jobs market
 2. Surveys, Interview
 3. Questionnaires
 4. DS programmes
2. Map required background ICT competences from e-CF3.0 and ICT profiles
3. Identify required extensions to e-CF3.0

Dimension 1: Areas of e-Competencies

- A
- B
- C
- D
- E

Dimension 2: e-competencies

- A.1-A.9
- B.1-B.6
- C.1-C.4
- D.1-D12
- E.1-E.9

Dimension 3: Proficiency level

- Knowledge
- Skills

List e-CF Profiles

EDISON Workshop
@EGI2015 CF
Definitions (according to eCFv3.0)

- **Competence** is a demonstrated ability to apply knowledge, skills and attitudes for achieving observable results.
 - Competence vs Competency
 - Competency is similar to skills or experience
- Competence is not to be confused with process or technology concepts such as, ‘Cloud Computing’ or ‘Big Data’. These descriptions represent evolving technologies and in the context of the e-CF, they may be integrated as elements within knowledge and skill examples.

- **Knowledge** in the context of competence definition is treated as something to know, to be aware of, familiar with, and obtained as a part of education.

- **Skills** is treated as provable ability to do something and relies on the person’s experience.
Demanded Data Science Competences and Skills: Jobs market analysis

• **Source**
 – IEEE Data Science Jobs (World but majority US) (collected > 120, selected for analysis > 30)
 – LinkedIn Data Science Jobs (NL) (collected > 140, selected for analysis > 30)
 – Existing studies and reports

• **Observations**
 – Many job ads don’t use Data Scientist as a definite profession:
 • Data Science competences/skills are specified as part of traditional ICT professions/positions
 – Many academic openings without specified skills profile
 – Explicit Data Scientist jobs specify wide variety of expected functions/responsibilities and required skills and knowledge
Identified Data Science Competence Groups

- Traditional/known Data Science skills/knowledge profiles include
 - Data Analytics or Business Analytics or Machine Learning
 - Engineering or Programming
 - Subject/Scientific Domain Knowledge

- EDISON identified 2 additional competence groups demanded by organisations
 - Data Management, Curation, Preservation
 - Scientific or Research Methods and/or Business Operations/Processes

- Other skills commonly recognized aka “soft skills” or “social intelligence”
 - Inter-personal skills or team work, cooperativeness

- All groups need to be represented in Data Science curriculum and training
 - Challenging task for Data Science education and training

- Another aspect of integrating Data Scientist into organisation structure
 - General Data Science (or Big Data) literacy for all involved roles and management
 - Common agreed way of communication and information/data presentation
 - Role of Data Scientist: Be ready to provide such literacy advice and guiding to organisation
Data Science Competences Areas

Data Science Competence includes 5 areas/groups:
- Data Analytics
- Data Science Engineering
- Domain Expertise
- Data Management
- Scientific Methods (or Business Process Management)

Scientific Methods:
- Design Experiment
- Collect Data
- Analyse Data
- Identify Patterns
- Hypothesise Explanation
- Test Hypothesis

Business Operations:
- Operations Strategy
- Plan
- Design & Deploy
- Monitor & Control
- Improve & Re-design
Identified Data Science Competence Groups

<table>
<thead>
<tr>
<th>Identified Data Science Competence Groups</th>
<th>Data Analytics (DA)</th>
<th>Data Management/ Curation (DM)</th>
<th>DS Engineering (DSE)</th>
<th>Ssearch Methods (DSRM) scientific/Re</th>
<th>DS Domain Knowledge (including Business Apps)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Use appropriate statistical techniques on available data to deliver insights</td>
<td>Develop and implement data strategy</td>
<td>Use engineering principles to research, design, or develop structures, instruments, machines, experiments, processes, systems, theories, or technologies</td>
<td>Create new understandings and capabilities by using the scientific method's hypothesis, test, and evaluation techniques; critical review; or similar engineering research and development methods</td>
<td>Understand business and provide insight, translate unstructured business problems into an abstract mathematical framework</td>
</tr>
<tr>
<td>2</td>
<td>Use predictive analytics to analyse big data and discover new relations</td>
<td>Develop data models including metadata</td>
<td>Develops specialized data analysis tools to support executive decision making</td>
<td>Direct systematic study toward a fuller knowledge or understanding of the fundamental aspects of phenomena and of observable facts, and discovers new approaches to achieve goals</td>
<td>Use data to improve existing services or develop new services</td>
</tr>
<tr>
<td>3</td>
<td>Research and analyze complex data sets, combine different sources and types of data to improve analysis.</td>
<td>Integrate different data source and provide for further analysis</td>
<td>Design, build, operate relational non-relational databases</td>
<td>Undertakes creative work, making systematic use of investigation or experimentation, to discover or revise knowledge of reality, and uses this knowledge to devise new applications</td>
<td>Participate strategically and tactically in financial decisions that impact management and organizations</td>
</tr>
<tr>
<td>4</td>
<td>Develop specialized analytics to enable agile decision making</td>
<td>Develop and maintain a historical data repository of analysis</td>
<td>Develop and apply computational solutions to domain related problems using wide range of data analytics platforms</td>
<td>Apply ingenuity to complex problems, develop innovative ideas</td>
<td>Recommends business related strategic objectives and alternatives and implements them</td>
</tr>
<tr>
<td>5</td>
<td>Collect and manage different source of data</td>
<td>Collect and manage different source of data</td>
<td>Develop solutions for secure and reliable data access</td>
<td>Ability to translate strategies into action plans and follow through to completion.</td>
<td>Provides scientific, technical, and analytic support services to other organisational roles</td>
</tr>
<tr>
<td>6</td>
<td>Visualise complex and variable data.</td>
<td>Visualise complex and variable data.</td>
<td>Develop algorithms to analyse multiple source of data</td>
<td>Influences the development of organizational objectives</td>
<td>Analyse multiple data sources for marketing purposes</td>
</tr>
<tr>
<td>7</td>
<td>EDISON Workshop EGI2015 CF</td>
<td>EDISON Workshop EGI2015 CF</td>
<td>Prototype new data analytics applications</td>
<td>Analyse customer data to identify/optimise customer relations actions</td>
<td>DS Competence Framework</td>
</tr>
</tbody>
</table>
Suggested e-CF extensions for DS

A. PLAN and Design
 • A.10* Organisational workflow/processes model definition/formalisation
 • A.11* Data models and data structures

B. BUILD: Develop and Deploy/Implement
 • B.7* Apply data analytics methods (to organizational processes/data)
 • B.8* Data analytics application development
 • B.9* Data management applications and tools
 • B.10* Data Science infrastructure deployment

C. RUN: Operate
 • C.5* User/Usage data/statistics analysis
 • C.6* Service delivery/quality data monitoring

D. ENABLE: Use/Utilise
 • D.10. Information and Knowledge Management (powered by DS)
 • D.13* Data presentation/visualisation, actionable data extraction
 • D.14* Support business processes/roles with data and insight (support to D.5, D.6, D.7, D.12)
 • D.15* Data management/preservation/curation with data and insight

E. MANAGE
 • E.10* Support Management and Business Improvement with data and insight (support to E.5, E.6)
 • E.11* Data analytics for (business) Risk Analysis/Management (support to E.3)
 • E.12* ICT and Information security monitoring and analysis (support to E.8)
Data Scientist and Subject Domain Specialist

• **Subject domain components**
 – Model (and data types)
 – Methods
 – Processes
 – Domain specific data and presentation/visualization methods (?)
 – Organisational roles and relations

• **Data Scientist is an assistant to Subject Domain Specialists**
 – Translate subject domain Model, Methods, Processes into abstract data driven form
 – Implement computational models in software, build required infrastructure and tools
 – Do (computational) analytic work and present it in a form understandable to subject domain
 – Discover new relations originated from data analysis and advice subject domain specialist
 – Interact and cooperate with different organizational roles to obtain data and deliver results and/or actionable data
Data Science and Subject Domains

Data Science domain components
- Data structures & databases/storage
- Abstract data driven math&compute models
- Data Analytics methods
- Data and Applications Lifecycle Mngnt
- Cross-organisational assistive role

Domain specific components
- Domain specific data & presentation
- Models (and data types)
- Methods
- Processes
- Organisational roles

Data Scientist functions is to translate between two domains
Possible Data Scientist profiles/roles

- Data Analytics
 - Data Mining
 - Machine Learning
- Data Management
 - Digital Librarian, Data Archivist, Data Curator
- Data Science Engineering
 - Data Analytics applications development
 - Scientific programmer
 - Data Science/Big Data Infrastructure engineer/developer/operator
- Data Science Researcher
 - Data Science creative
 - Data Science consultant/Analyst
- Business Analyst
- Data Scientist in subject/research domain

- Research e-Infrastructure brings its own specifics to required competences and skills definition
Further Steps

• Define a taxonomy and classification for DS competences and skills as a basis for more formal CF-DS definition
 – Cooperate with other H2020 projects
• Create a Questionnaire using CF-DS vocabulary
 – Run surveys for target communities
 • First of all, for EGI community
 • Create open community forum to collect contribution
 – Plan a number of key interviews, primarily experts and top executives at universities and companies